British Columbia. She described the placer mining for gold in the Caribou District of British Columbia, and mentioned the valuable lode district of southeastern British Columbia as furnishing many specimens of minerals. Lake Kootenai in this district furnishes mainly gold, lead, copper and zinc minerals. Among the minerals described and illustrated by specimens were gold, pyrargyrite, fluorite, cassiterite, galena, cerussite, siderite and molybdenite.

The second paper was given by Dr. Alfred C. Hawkins, who spoke on the Minerals of Western New York. Dr. Hawkins mentioned the localities of Rochester, Lockport and Syracuse as rich in minerals. Emphasizing the Rochester locality he cited pyrite of a dodecahedral habit in dolomite as one of the rare occurrences. He described the dolomite of Rochester as being white rather than yellow and mentioned light purple fluorite as occurring in the cavities of the dolomite. Of less frequent occurrence in these cavities are selenite, anhydrite, celestite, galena and sulphur. At Lockport the dolomite contains selenite, fluorite and calcite. Between Rochester and Lockport are several quarries which have not been visited. In conclusion, Dr. Hawkins showed a number of excellent slides of the region.

Dr. George F. Kunz showed a magnificent topaz crystal from Burma which was cinnamon brown in color, and was the largest found in the locality. Also a suite of blue zircons both cut and uncut. He stated that the blue color was in reality produced from hyacinth zircons by the action of cobalt nitrate and potassium ferrocyanide vapors. He suggested that for these artificially colored stones the name of “Starlight” be used.

Mr. O. I. Lee showed several rare minerals including naëgite (an altered zircon), turanite, schizolite, taeniolite and erikite.

NEW MINERAL NAMES

Aramayoite


KATHLEEN YARDLEY: X-ray examination of aramayoite. Ibid., pp. 163-168.

NAME: In honor of Señor Don Felix Avelino Aramayo, former Managing Director of the Compagnie Aramayo de Mines en Bolivie.

CHEMICAL PROPERTIES: A sulfide of silver, bismuth and antimony. Formula: Ag₂S·(Sb, Bi)₃S₇. Analysis: S 20.87, Sb 29.95, Bi 13.75, Ag 34.74, Cu 0.53, Fe tr.; Sum 99.84.

CRYSTALLOGRAPHIC PROPERTIES: Triclinic. a:b:c = 0.9972:1:0.9886. α = 86°55', β = 90°53', γ = 93°18'. Cleavage c(001), perfect. Angle between the perfect and the fibrous cleavage is about 77°.


OCCURRENCE: Found in the Animas Mine of the Compagnie Aramayo de Mines en Bolivie at Chocaya, province Sud-Chichas, Dept. of Potosi, Bolivia. Associated with massive tetrahedrite and pyrite.
Upon a specimen of this mineral in the collection of the United States National Museum (No. 95,553, gift of Jack Hyland) that had been partially investigated at the time the above papers appeared, Dr. M. N. Short of the U. S. Geological Survey has determined the following metallographic properties: Color white, anisotropic. HNO₃ stains iridescent, action slow in starting, KOH stains iridescent. HCl, KCN, FeCl₃ and HgCl₂ negative.

W. F. FOSHAG

Norbergite


NAME: From the district in which it was found: Norberg, Sweden.

CHEMICAL PROPERTIES: A hydrous magnesium silicate of the chondrodite group. Formula: Mg₅SiO₄·Mg(F,OH)₂. Analysis: SiO₂ 28.54, Al₂O₃ 0.09, Fe₂O₃ 0.69, FeO 0.82, MgO 56.45, CaO 1.01, MnO 0.18, F 13.70, H₂O 2.90, CO₂ 1.21. Sum (−0·F 1s:82) 99.82.


OCURRENCE: Found at the Ostannmosoa iron mine, Norberg, associated with tremolite and a peculiar variety of allanite replacing a dolomitic limestone. Chondrodite is abundant in other parts of the same mine.

W. F. F.

Fluoborite

PER GEIGER: Ibid., page 85.

NAME: From its composition. A magnesium fluoborate.

CHEMICAL COMPOSITION: A hydrous fluoride and borate of magnesium. 3MgO. 3B₂O₃+3Mg(F,OH)₂. Analysis: SiO₂ 0.45, Al₂O₃ 0.91, Fe₂O₃ 0.81, MgO 61.65, MnO 0.05, F 9.30, B₂O₃ 17.90, H₂O 10.78, CO₂ 1.36. Sum (−0·F 3.92) 99.28.

CRYSTALLOGRAPHIC PROPERTIES: Hexagonal. c = 3.09 Å, a = 9.05 Å. a:c = 0.341 (from x-ray data).


OCURRENCE: From the Tallgruvan mine, east of Kallmorn, Norberg, associated with magnetite, ludwigite, chondrodite, szaibelyite (?) and their alteration products replacing a dolomite.

DISCUSSION: Fluoborite is probably identical with an unknown mineral associated with ludwigite and szaibelyite from Lincoln County, Nevada, described by J. L. Gilson and Earl V. Shannon (Am. Mineral., 10, 137, 1925).

W. F. F.