The synthetic Cr^{2+} silicates $BaCrSi_4O_{10}$ and $SrCrSi_4O_{10}$: The missing links in the gillespite-type $ABSi_4O_{10}$ series

RONALD MILETICH, DAVID R. ALLAN,* AND ROSS J. ANGEL

Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany

Abstract

The new Cr²⁺-containing silicate compounds BaCrSi₄O₁₀ and SrCrSi₄O₁₀ were synthesized both from alkali-borate fluxes and by high-T subsolidus solid-state reactions. The gillespite-type crystal structures (space group P4/ncc, Z = 4) were determined from singlecrystal X-ray diffraction data. The unit-cell parameters are a = 7.4562(4), c = 15.5414(4)Å for SrCrSi₄O₁₀, and a = 7.5314(3), c = 16.0518(4) Å for BaCrSi₄O₁₀. Comparison with previously published data shows that A (= Ba, Sr, Ca) cation substitution in $ABSi_4O_{10}$ gillespite-type compounds mainly affects the c lattice parameter whereas the substitution of the B (= Cu, Cr, Fe) site leads to only small changes, mainly in a. The Cr^{2+} cation occupies a square-planar coordinated site unique in oxide crystal chemistry, with a Cr-O bond length of 1.999 \pm 0.002 Å in all three Cr compounds. The rigidity of these bonds leaves the $CrSi_4O_{10}$ layers within the structure with only one significant degree of freedom, that of rotation of the four-membered Si_4O_{10} rings in response to substitution on the A cation site. The magnitudes of these rotations are independent of the identity of the B cation. In addition the AO₈ polyhedron becomes more elongated //c with increasing radius of the A cation. The increasing aplanarity of the $O(3)X_3$ configuration is almost exclusively determined by occupational changes on A, whereas the aplanarity of the square-planar $BO(3)_4$ group can be related to the positional shifts induced by the individual substitutions on both A and B sites. Polarized optical absorption spectroscopy was conducted on (hk0)sections of $SrCrSi_4O_{10}$ and $BaCrSi_4O_{10}$. Absorption bands at ~19500, ~14900, and ~22070 cm⁻¹ could be assigned to ${}^{5}B_{1g} \rightarrow {}^{5}B_{2g}$, ${}^{5}B_{1g} \rightarrow {}^{5}A_{1g}$ (E $\perp c$), and ${}^{5}B_{1g} \rightarrow {}^{5}E_{g}$, (E // c) spinallowed d-d transitions for Cr^{2+} in a square-planar configuration. The crystal-field stabilization energies of 13110 \pm 150 and 13220 \pm 180 cm⁻¹ are indistinguishable for both compounds reflecting the very similar CrO₄ geometries.