An experimental study of the pressure-temperature stability of MgMgAl-pumpellyite in the system MgO-Al₂O₃-SiO₂-H₂O

THOMAS FOCKENBERG
Institut für Mineralogie, Ruhr-Universität Bochum, D-44780 Bochum, Germany

ABSTRACT
The stability field of MgMgAl-pumpellyite, Mg₅Al₅Si₆O₂₁(OH)₇, was determined in the system MgO-Al₂O₃-SiO₂-H₂O in reversal experiments at pressures between 34 and 100 kbar and temperatures in the range of 597 to 1050 °C. Brackets were obtained on five breakdown reactions (in order of increasing pressure):

\[
8\text{Mg}_5\text{Al}_5\text{Si}_6\text{O}_{21}(\text{OH})_7 \xrightarrow{} 19\text{Mg}_5\text{Al}_5\text{Si}_6\text{O}_{21}(\text{OH})_7 + 2\text{Al}_2\text{SiO}_3 + 7\text{Mg}_3\text{Si}_2\text{O}_{10}(\text{OH})_2 + 2\text{H}_2\text{O} \tag{1}
\]

\[
12\text{Mg}_5\text{Al}_5\text{Si}_6\text{O}_{21}(\text{OH})_7 \xrightarrow{} 19\text{Mg}_5\text{Al}_5\text{Si}_6\text{O}_{21}(\text{OH})_7 + 11\text{Al}_2\text{SiO}_3 + \text{Mg}_3\text{Si}_2\text{O}_{10}(\text{OH})_2 + 4\text{H}_2\text{O} \tag{2}
\]

\[
6\text{Mg}_5\text{Al}_5\text{Si}_6\text{O}_{21}(\text{OH})_7 \xrightarrow{} 10\text{Mg}_5\text{Al}_5\text{Si}_6\text{O}_{21}(\text{OH})_7 + 5\text{Al}_2\text{SiO}_3 + \text{SiO}_2 + 2\text{H}_2\text{O} \tag{3}
\]

\[
6\text{Mg}_5\text{Al}_5\text{Si}_6\text{O}_{21}(\text{OH})_7 \xrightarrow{} 10\text{Mg}_5\text{Al}_5\text{Si}_6\text{O}_{21}(\text{OH})_7 + 5\text{Al}_2\text{SiO}_3(\text{OH})_2 + \text{SiO}_2 + 3\text{H}_2\text{O} \tag{4}
\]

\[
6\text{Mg}_5\text{Al}_5\text{Si}_6\text{O}_{21}(\text{OH})_7 \xrightarrow{} 10\text{Mg}_5\text{Al}_5\text{Si}_6\text{O}_{21}(\text{OH})_7 + 5\text{Al}_2\text{SiO}_3(\text{OH})_2 + \text{SiO}_2 + 3\text{H}_2\text{O} \tag{5}
\]

This phase becomes stable only at pressures of more than 34 kbar and temperatures up to 820 °C. Thus, MgMgAl-pumpellyite may be an H₂O-containing phase at depths greater than 100 km in the coldest parts of subduction zones.

INTRODUCTION
MgMgAl-pumpellyite, Mg₅Al₅Si₆O₂₁(OH)₇, (Fig. 1), was identified in experiments on a hypothetical (Ti,Zr,P)-free end-member of ellenbergerite in the simple chemical system MgO-Al₂O₃-SiO₂-H₂O by Schreyer et al. (1986; see also 1987, 1991). This Mg analogue of CaMg-pumpellyite was synthesized from a gel of the ideal composition 5MgO·2.5Al₂O₃·6SiO₂ at 50 kbar and 700 °C in the presence of excess H₂O. Preliminary P-T stability relations presented by Schreyer (1988) indicated that MgMgAl-pumpellyite is a high-pressure phase, stable at pressures above 37 kbar and temperatures between about 400° and 800 °C. Its low-T limit is marked by a breakdown reaction to talc + Mg-carpholite + chlorite, which has been bracketed by reversal experiments (Schreyer et al. 1991). Schreyer also determined that the high-T stability limit of MgMgAl-pumpellyite, as defined by a dehydration reaction to pyrope + kyanite + coesite + H₂O,
occurred at 50 kbar and 775 °C. Three additional breakdown reactions, connecting the two reactions mentioned above, are in order of rising temperature: MgMgAl-pumpellyite = Mg-chloritoid + talc + Mg-carpholite; MgMgAl-pumpellyite = Mg-chloritoid + talc + kyanite + H2O; and MgMgAl-pumpellyite = talc + kyanite + pyrope + H2O. The first reaction represents the lower pressure limit of the pumpellyite phase, whereas the other two are dehydration reactions that should have positive slopes (Schreyer 1988). Liu (1989) determined that the upper pressure stability of MgMgAl-pumpellyite, is represented by breakdown reaction to pyrope + kyanite + stishovite + H2O at P < 160 kbar and pyrope + stishovite + corundum + H2O at P > 160 kbar. However, these curves do not reflect the stable compatibility relations at these ultra-high pressures, because the P-T conditions for synthesis experiments are given in Table 1. Coesite was prepared by R. Wirth using SiO2 gel (99.999% purity). Starting materials for reversal experiments consisted of approximately equal amounts of MgMgAl-pumpellyite and intimately mixed stoichiometric mixtures of the respective breakdown phases in the presence of excess H2O.

Experimental techniques

Gels were used as starting materials for synthesis of the phases MgMgAl-pumpellyite, talc, pyrope, kyanite, and Mg-chloritoid. These gels were prepared following the method of Hamilton and Henderson (1968) using Si(OC2 H5)4 (tetraethylorthosilicate, TEOS, 99.9%, Merck, Darmstadt, Germany), Mg powder (>99.8%, Fluka, Buchs, Switzerland), Al powder (>99.5%, Schuchardt, Munich, Germany), and nitric acid and ammonium hydroxide 25% (both p.a. quality). The compositions of the gels and the P-T conditions for synthesis experiments are given in Table 1. Coesite was prepared by R. Wirth using SiO2 gel (99.999% purity). Starting materials for reversal experiments consisted of approximately equal amounts of MgMgAl-pumpellyite and intimately mixed stoichiometric mixtures of the respective breakdown phases in the presence of excess H2O.

Synthesis and reversal experiments were carried out at pressures up to 65 kbar in a piston-cylinder apparatus constructed after the design of Boyd and England (1960). The pressure cell (diameter 12.7 mm) used up to 50 kbar

Table 1. Starting materials, conditions, and results of synthesis experiments

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Starting material</th>
<th>T (°C)</th>
<th>P (kbar)</th>
<th>T (h)</th>
<th>Product phases (for more details see text)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pu 10</td>
<td>gel Pu2</td>
<td>650</td>
<td>50</td>
<td>16</td>
<td>MgMgAl-pmp</td>
</tr>
<tr>
<td>Pu 25</td>
<td>gel Pu2</td>
<td>650</td>
<td>50</td>
<td>16</td>
<td>MgMgAl-pmp</td>
</tr>
<tr>
<td>Ctd 27</td>
<td>gel 111 + synth. Mg-cld</td>
<td>650</td>
<td>40</td>
<td>38</td>
<td>Mg-cld + dsp (about 5%)</td>
</tr>
<tr>
<td>Ky 10</td>
<td>gel 011</td>
<td>800</td>
<td>40</td>
<td>48</td>
<td>ky</td>
</tr>
<tr>
<td>Tc 8</td>
<td>gel 304</td>
<td>600</td>
<td>2</td>
<td>48</td>
<td>tlc</td>
</tr>
<tr>
<td>Py 114</td>
<td>gel 313</td>
<td>800</td>
<td>35</td>
<td>23</td>
<td>ppr</td>
</tr>
<tr>
<td>Py 110</td>
<td>gel 313</td>
<td>800</td>
<td>40</td>
<td>18</td>
<td>ppr</td>
</tr>
</tbody>
</table>

Note: Abbreviations used in this paper: coe = coesite; cld = chloritoid; dsp = diaspor; ky = kyanite; pmp = pumpellyite; prp = pyrope; stish = stishovite; tlc = talc; top-OH = topaz-OH, gel Pu2 = 10 MgO:5 Al2O3:12 SiO2, gel 011 = 1 Al2O3:1 SiO2, gel 111 = 1 MgO:1 Al2O3:1 SiO2, gel 313 = 3 MgO:1 Al2O3:3 SiO2, gel 304 = 3 MgO:4 SiO2.
consisted of NaCl and fired pyrophyllite causing negligible friction. This cell is similar to type III described by Massonne and Schreyer (1986). Quoted experimental pressures are based on a simple force per area calibration of the oil pressure and piston area. The overall 2σ pressure uncertainty was assumed to be 2%. Temperature measurement and control were achieved using mantled chromel-alumel thermocouples. Combining all the uncertainties in the thermocouple, the wires, and the control instruments, the 2σ uncertainty in T is estimated to be 2%. Correction of the emf of the thermocouple followed the data of Getting and Kennedy (1970); about 3–5 °C (depending on P and T) have to be subtracted from the measured temperature. A second correction to the temperature was applied according to the temperature distribution within a salt pressure cell as investigated by Leistme et al. (1993b). Temperature uncertainty is assumed to be about 0.5 mm away from the capsule in the axial direction. Because the capsule is placed in the hot spot of the salt cell 2 °C must be added to the measured temperature.

Synthesis experiments were carried out using large gold capsules (length = 16 mm, diameter = 6.1 mm, wall thickness = 0.25 mm); smaller gold capsules served for reversal experiments (length = 4 mm, diameter = 2.3 mm, wall thickness = 0.25 mm). Experiments at 60 and 65 kbar were carried out using pressure cells composed of natural CaF2 instead of rock salt. The diameter of these cells is 8 mm. Ultrahigh-pressure experiments at 80 and 100 kbar were carried out in the 1200 ton uniaxial split sphere multianvil press at the Bayerisches Geoinstitut, Bayreuth. This type of multianvil press is described by Ito et al. (1984); detailed information on pressure calibration, anvils, and sample assemblies are given by Wunder et al. (1993b). Temperature uncertainty is assumed to be about ±50 °C (D. Canol, personal communications) and pressure uncertainty is as much as ±5 kbar (Wunder et al. 1993b). Experimental charges were enclosed in gold capsules with a length of 4 mm, an outer diameter of 2 mm, and a wall thickness of 0.25 mm.

All experiments were carried out under excess H2O conditions; all cold-sealed capsules were tested for leakage after the experiments. Direction of the reaction of reversal experiments was determined by comparing the intensities of the X-ray diffractograms of the experimental products with those of the starting mixtures.

Chemical analyses of synthetic MgMgAl-pumpellyite were carried out using the electron microprobe at Ruhr-University (CAMECA SX 50) with a PAP correction (Pouchou and Pichoir 1984). The beam current was 10 nA, the accelerating voltage was 15 kV, and the counting time was 20 s. Pyrope served as the standard (MgKα, AlKα, SiKα).

Syntheses of pure MASH phases

Synthesis conditions, starting materials, and results are summarized in Table 1. Details of the experiments are given below.

MgMgAl-pumpellyite

Single-phase pumpellyite was synthesized from the original gel Pu2 used by Schreyer et al. (1991) at 50 kbar and 700 °C for 16 h. Crystals are euhedral with lengths up to 30 μm. Lattice parameters for the monoclinic cell were determined as:
\[a = 8.544(3) \text{ Å}; b = 5.717(2) \text{ Å}; c = 18.502(6) \text{ Å}; \beta = 97.71(3)°.\]

These values are identical (within 2σ error) to those reported by Schreyer et al. (1991). The chemical composition of the crystals was determined by electron microprobe analysis, yielding a mean H2O-free formula of Mg9.75(15) Al10.35(14) Si11.87(4) O49 (average of 14 grains, see Table 2). Although this composition deviates by ~3% from the initial stoichiometric oxide ratio of the gel, no additional phases were identified in the X-ray patterns of the experimental products nor during electron microprobe analysis. Nevertheless, because the composition of the synthetic pumpellyite plots away from the ideal ratio toward Al-richer compositions, small amounts of additional phases such as enstatite or pyrope + coesite must be present in the products.

Talc

Synthetic talc was obtained by reacting a gel of the ideal oxide ratio 3MgO:4SiO2 in the presence of excess water at 2 kbar and 600 °C. Lattice parameters of this phase were determined as:
\[a = 5.34(8) \text{ Å}; b = 9.12(2) \text{ Å}; c = 9.40(2) \text{ Å}; \alpha = 90.6(3)°; \beta = 97.4(6)°; \gamma = 89.9(2)°.\]

With the exception of the a parameter, these values are somewhat lower than those determined by Wunder (1993), who presented values of:
\[a = 5.288(5) \text{ Å}; b = 9.14(9) \text{ Å}; c = 9.455(4) \text{ Å}; \alpha = 90.8(1)°; \beta = 98.6(1)°; \gamma = 90.0(1)°.\]

This discrepancy may result from stacking faults in the talc lattice. Wunder (1993) demonstrated that talc synthesized from starting materials having the ideal oxide ratio of 3:4 (see above) contains variable amounts of Mg(OH)2-layers, which can directly influence the lattice parameters.
Table 3. Results of bracketing experiments for reactions 1, 2, and 3.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>P (kbar)</th>
<th>T (nom. $^\circ$C)</th>
<th>T (corr. $^\circ$C)</th>
<th>Duration (h)</th>
<th>Growth of:</th>
<th>Reaction extent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pu 39-G</td>
<td>34</td>
<td>600</td>
<td>596</td>
<td>46</td>
<td>cld, ky, tlc</td>
<td>(+)</td>
</tr>
<tr>
<td>Pu 40-G</td>
<td>34</td>
<td>640</td>
<td>639</td>
<td>76</td>
<td>cld, ky, tlc</td>
<td>(+)</td>
</tr>
<tr>
<td>Pu 41-G</td>
<td>35</td>
<td>650</td>
<td>657</td>
<td>44</td>
<td>no reaction</td>
<td></td>
</tr>
<tr>
<td>Pu 42-G</td>
<td>35</td>
<td>640</td>
<td>637</td>
<td>23</td>
<td>pmp</td>
<td>(+)</td>
</tr>
<tr>
<td>Pu 31-G</td>
<td>36</td>
<td>600</td>
<td>599</td>
<td>93</td>
<td>pmp</td>
<td>(+)</td>
</tr>
<tr>
<td>Pu 36-G</td>
<td>36</td>
<td>640</td>
<td>638</td>
<td>46</td>
<td>pmp</td>
<td>(+)</td>
</tr>
<tr>
<td>Pu 37-G</td>
<td>37</td>
<td>640</td>
<td>639</td>
<td>69</td>
<td>pmp</td>
<td>(+)</td>
</tr>
<tr>
<td>Pu 36-G</td>
<td>38</td>
<td>600</td>
<td>602</td>
<td>46</td>
<td>pmp</td>
<td>(+)</td>
</tr>
</tbody>
</table>

Table 4. Results of bracketing experiments for reactions 4 and 5.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>P (kbar)</th>
<th>T (nom. $^\circ$C)</th>
<th>T (corr. $^\circ$C)</th>
<th>Duration (h)</th>
<th>Growth of:</th>
<th>Reaction extent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pu 16-G</td>
<td>80</td>
<td>800</td>
<td>800</td>
<td>13</td>
<td>pmp</td>
<td>(+)</td>
</tr>
<tr>
<td>Pu 28-G</td>
<td>80</td>
<td>850</td>
<td>890</td>
<td>12</td>
<td>prp, top-OH, coe</td>
<td>(+)</td>
</tr>
<tr>
<td>Pu 8-G</td>
<td>80</td>
<td>900</td>
<td>900</td>
<td>13</td>
<td>prp, top-OH, coe</td>
<td>(+)</td>
</tr>
<tr>
<td>Pu 4-G</td>
<td>80</td>
<td>950</td>
<td>950</td>
<td>13</td>
<td>prp, top-OH, coe</td>
<td>(+)</td>
</tr>
<tr>
<td>Pu 7-G</td>
<td>80</td>
<td>1000</td>
<td>1000</td>
<td>13</td>
<td>prp, top-OH, coe</td>
<td>(+)</td>
</tr>
</tbody>
</table>

Note: Starting material: mix PP-A2 from experiment Pu 25 (Mg-pmp), Pu 100 (ppr), Ky 9 (ky), coe. Symbols: See Table 2. Abbreviations: See Table 1.

Kyanite

A gel of the oxide ratio $1\text{Al}_2\text{O}_3:1\text{SiO}_2$ was run at 40 kbar and 800 °C and yielded only kyanite. The euhedral crystals show low birefringence and have a length of 10 μm. Lattice parameters of this phase are: $a = 7.12(4) \text{ Å}$; $b = 7.89(4) \text{ Å}$; $c = 5.58(4) \text{ Å}$; $\alpha = 89.9(6)^\circ$; $\beta = 100.8(6)^\circ$; $\gamma = 106.3(6)^\circ$. These agree well with those determined by Massonne (1989), which were $a = 7.1217(3) \text{ Å}$; $b = 7.8476(4) \text{ Å}$; $c = 5.5730(3) \text{ Å}$; $\alpha = 89.945(7)^\circ$; $\beta = 101.192(5)^\circ$; $\gamma = 106.006(3)^\circ$.

Pyrope

Single-phase pyrope was synthesized from a gel having the oxide ratio $3\text{MgO}:1\text{Al}_2\text{O}_3:3\text{SiO}_2$ at 50 kbar/900 °C. The euhedral crystals are about 50 μm in diameter. The cubic cell edge was determined to be $11.4578(9) \text{ Å}$, which is in good agreement with that given by Geiger et al. (1991) as $11.457(2) \text{ Å}$.

Coesite

Pure coesite was prepared by R. Wirth from an SiO$_2$ gel at 30 kbar and 700 °C. Crystals are up to 50 μm in length, and lattice parameters are: $a = 7.139(25) \text{ Å}$; $b = 12.423(35) \text{ Å}$; $c = 7.121(26) \text{ Å}$; $\beta = 120.0(4)^\circ$.

Mg-chloritoid

A gel of the oxide ratio $1\text{MgO}:1\text{Al}_2\text{O}_3:1\text{SiO}_2$, along with precrystallized Mg-chloritoid as seeds was reacted at 650 °C and 35 kbar to yield Mg-chloritoid plus small traces of corundum. Lattice parameters are: $a = 9.45(5) \text{ Å}$; $b = 5.482(2) \text{ Å}$; $c = 18.10(8) \text{ Å}$; $\beta = 101.5(7)^\circ$, which are similar to those of Chopin et al. (1992).

Results of reversal experiments

The present determination of the P-T stability field of MgMgAl-pumpellyite is in general agreement with the grid constructed by Schreyer et al. (1991) from theoretical and experimental work. Conditions and results of the reversal experiments are given in Tables 3 and 4 and Figure 2.

Reaction 1: MgMgAl-Pumpellyite \leftrightarrow Mg-Chloritoid + Kyanite + Talc + H$_2$O

This reaction was bracketed between 34 and 36 kbar at ~ 600 °C, and between 34 and 35 kbar at ~ 640 °C (Table 3). Though Massonne (1995) calculated this curve with a negative slope (-19.6 K/kbar), in Figure 2 the univariant boundary is shown schematically to have a small positive slope due to the fact that H$_2$O is released in most other reactions toward higher temperatures. In fact, the experimental results do not constrain the sign of the slope of the curve, but they do imply that it is shallower than the calculated reaction curve. The breakdown of pumpellyite at pressures below 35 kbar indicates that this phase is stable toward lower pressures than estimated by Schreyer et al. (1991, lower P limit at 37 kbar) and computed by Massonne (1995, lower P limit at 40 kbar).
Figure 2. P-T diagram showing the stability field of MgMgAl-pumpellyite. Solid and open symbols refer to growth or breakdown, respectively, of MgMgAl-pumpellyite; half-closed symbols indicate no reaction (see Tables 2 and 3). The reaction curve carpholite + chloritoid + chlorite = pumpellyite was adopted from Schreyer et al. (1991), reaction curve carpholite + chloritoid + talc = pumpellyite (broken line) was not determined experimentally. The breakdown of topaz-OH to kyanite + vapor was reversed by Wunder et al. (1993a) and the transition coesite = stishovite by Zhang et al. (1996). Broken lines define the upper pressure limit of the assemblage talc + kyanite as given by Schreyer (1988). Linear geotherms were calculated for a mean rock density of 3.3 g/cm³.

investigated by Schreyer et al. (1991) was not studied in this work. As an H₂O-absent reaction, 6 is assumed to have a shallow Clapeyron slope. Assuming that the positions of reactions 1 and 2 given in Figure 2 are correct, reaction 6 likely lies at a pressure of ~34 kbar and temperatures between 540 and 570 °C. The high temperature limit is defined by the intersection with the reaction

\[
3\text{MgAl}_2\text{Si}_5\text{O}_{11}\text{(OH)}_8 + \text{SiO}_2
\]

\[
= 3\text{Al}_2\text{SiO}_5 + \text{Mg}_5\text{Si}_3\text{O}_{10}\text{(OH)}_2 + 5\text{H}_2\text{O} \quad (8)
\]

The position of reaction 8 is taken from Schreyer et al. (1991).

Reaction 2: MgMgAl-Pumpellyite ↔ Talc + Pyrope + Kyanite + H₂O

Brackets of this reaction were obtained at 40 kbar between ~640 and ~680 °C and at 45 kbar between ~700 and ~720 °C (Table 3). A range of Clapeyron slopes is permitted by the reversals. If a slope of +5 K/kbar (calculated +6.4 K/kbar; Massonne 1995) is assumed, the invariant point connecting curves 1 and 2 would be located at 34.2 kbar and 637 °C (Fig. 2) and reaction 1 would be stable. However, taking into account the uncertainties in P and T of the experiments and the width of the reversals, the invariant point may occur at slightly higher or substantially lower temperatures. The current experiments permit a sufficiently shallow Clapeyron slope that reaction 1 may be metastable. Regardless of its relative stability, however, the invariant point defined by the intersection of reactions 1 and 2 must lie at ~35 kbar and ~650 °C, as opposed to ~41 kbar and 740 °C proposed by Schreyer et al. (1991).

Reaction 3: MgMgAl-Pumpellyite ↔ 10 Pyrope + Coesite + Kyanite + H₂O

Reaction 3 was bracketed between ~730 and ~780 °C at 50 kbar (Table 3). No significant change in the intensities of the X-ray reflections was detected at 50 kbar and 753 °C. Another bracket was obtained between ~730 and ~760 °C at 60 kbar (Table 2). The location of this reaction curve with a steep positive slope of +3 K/kbar (Fig. 2) agrees both with the position proposed by Schreyer et al. (1991) and calculated by Massonne (1995; slope +3.8 K/kbar).

The invariant point defined by the intersection of reactions 2 and 3 is located at 48 kbar and 715 °C (Fig. 2); Schreyer (1988) assumed its position to lie at 44 kbar and 760 °C. Massonne (1995) calculated this point to lie at 44 kbar and 710 °C, which is in fairly good agreement with the experimental data. This invariant point also represents the maximum pressure for the stable coexistence of the whiteschist assemblage talc + kyanite (Fig. 2).
Reactions 4 and 5: \(\text{MgMgAl-Pumpellyite} \leftrightarrow \text{Pyrope} + \text{Topaz-OH} + \text{Coesite} + \text{Stishovite} + \text{H}_2\text{O} \)

Because insufficient amounts of either stishovite and topaz-OH were available for use in the present experiments, the starting material of the reversal experiments at ultrahigh pressure conditions is identical to that of reaction 3. Nevertheless, in all experiments within the stability field of topaz-OH (see Wunder et al. 1993a), kyanite was observed to disappear completely at the expense of topaz-OH. Presumably, because of the very small amount of the SiO\(_2\)-phase produced, no reflections of coesite or stishovite were observed in the X-ray patterns. Direction of reaction was detected by the growth or decrease of the reflections of pumpellyite, pyrope, and topaz-OH.

Reactions 4 and 5 are constrained to lie between \(-800\) and \(-850\) °C at both 80 and 100 kbar (Table 4), indicating that their Clapeyron slopes are steep. Because no new phase was identified in the X-ray patterns of the experiment products, the maximum pressure of MgMgAl-pumpellyite stability should exceed 100 kbar.

Petrography and Chemical Composition of MgMgAl-Pumpellyite

A backscattered-electron (BSE) image (Fig. 3) of the products of experiment Pu 17-G (Table 3) shows large grains of pyrope (light gray) in a matrix of pumpellyite (dark gray), in which individual crystals cannot be distinguished because of their fine grain size (<10 \(\mu\)m). Thus, textural relationships between pyrope and pumpellyite indicating the growth of pumpellyite on a pyrope surface cannot be observed. However, small grains of pumpellyite are intergrown with pyrope (dark spots on the surface of pyrope crystals, Fig. 3), which may reflect the breakdown of pyrope and the formation of new grains MgMgAl-pumpellyite.

The MgMgAl-pumpellyite produced in selected bracketing experiments was analyzed by the electron microprobe. Mean compositions of pumpellyites calculated on an H\(_2\)O-free base (normalized on 49 O atoms) are presented in Table 2. The mean pumpellyite compositions after reversal experiments are distinguished from those of the starting material (Table 2, experiment Pu 25) by their higher Si and lower Mg and Al contents. However, the large 2\(\sigma\) uncertainties indicate that there is wide chemical variability of the pumpellyite grains in each sample (Table 4), and no statistical significance should be ascribed to the differences. The heterogeneity in the chemical compositions may result from the relatively short experiment times employed in this study. Deviations from stoichiometric MgMgAl-pumpellyite of at least several percent appear to be common to all experiments. The reason for this is not known.

Discussion

Reversal experiments on five breakdown reactions of MgMgAl-pumpellyite indicate that this phase is stable only at ultra high-pressure (UHP) conditions. Figure 2 shows the pumpellyite stability field and linear geotherms calculated on the basis of a rock density of 3.3 g/cm\(^3\), which may be close to the average density of the Earth’s lithosphere. According to the results of this work, MgMgAl-pumpellyite requires a minimum pressure of 35 kbar, or about 115 km depth, to become a stable phase. The largest part of the pumpellyite field falls into a \(P-T\) realm characterized by geotherms lower than 5 °C/km. Although this geotherm has been regarded as the lowest one realized on Earth (see Schreyer 1988), new simulations on the temperature distribution within subduction zones (e.g., Peacock 1990) indicate that rocks could be subducted along geotherms as low as 3 °C/km. These geotherms are realized in the inner parts of rapidly buried continental or oceanic crust in long-lasting subduction zones (Peacock 1990). MgMgAl-pumpellyite, as a H\(_2\)O-containing mineral (7.1 wt% H\(_2\)O; Schreyer et al. 1991), may therefore transport H\(_2\)O to great depths provided that the bulk composition is appropriate for its formation under these geotherms (see below).

Assuming a linear geotherm of 5 °C/km, metamorphic rocks containing MgMgAl-pumpellyite as the only hydrous phase will dehydrate completely at depths greater than 150 km due to formation of pyrope-rich garnet + kyanite + coesite. At 3 °C/km, MgMgAl-pumpellyite becomes unstable at \(-300\) km (Fig. 2) and produces pyrope + topaz-OH + stishovite + H\(_2\)O. In metamorphic rocks buried along geotherms higher than 5 °C/km, pumpellyite can grow with no H\(_2\)O loss from the assemblage Mg-carpholite + Mg-chloritoid + talc. Alternatively, the formation of the pumpellyite phase from Mg-chloritoid + kyanite + talc (reaction 1) requires only small amounts of H\(_2\)O, which may be available in a subducting slab from dehydration reactions involving other minerals. Because these two reactions are located within the realm of geotherms higher than 5 °C/km, the pumpellyite phase may
Figure 4. ACF-diagram showing the locations of high-pressure minerals together with fields of four typical rock types (from Winkler 1979). Also shown are assumed tie-lines for geotherms lower than 5 °C/km. Solid lines represent coexistence of Mg-MgAl-pumpellyite with high-pressure phases outside the stability field of pyrope. Broken lines represent coexistence of pyrope especially with kyanite, which cuts off Mg-MgAl-pumpellyite from the compositional fields of the four rock types.

Figure 5. P-T diagram showing the stability fields of the synthetic phases MgMgAl-pumpellyite (solid line; this work), phase A (dot-dashed), clinohumite-OH (dotted), and chondrodite-OH (dashed; all taken from Wunder 1996).

occur as a rock-forming mineral in subducted continental slabs. Figure 2 also shows the reaction curve talc + kyanite = MgMgAl-pumpellyite + coesite (Schreyer 1988), which represents the lower pressure limit of the pumpellyite phase in an assemblage with an SiO₂-phase (coesite). Because this curve is nearly identical with the 5 °C/km geotherm, the pumpellyite-silica assemblage is restricted to the coldest parts of a subducted coesite-bearing rocks, whereas pumpellyite may occur in SiO₂-depleted rocks at somewhat higher geotherms.

The experimental data on reactions 2 and 3 agree well with the calculated curves given by Massonne (1995) as to their positions within the P-T field and Clapeyron slopes, but large deviations occur concerning the P-T position of reaction 1. The experiments carried out on this reaction could not reproduce the large negative Clapeyron slope of the calculated curve given by Massonne (1995) indicating that MgMgAl-pumpellyite is more stable to lower pressures than computed. Because chloritoid does not appear as a reactant in reactions 2 and 3, this discrepancy may be caused by the provisional thermodynamic data of this phase given by Massonne.

In which kind of rocks may the pumpellyite phase occur in nature? Figure 4 is an ACF diagram that shows the location of high-pressure minerals that are expected to be stable at geotherms lower than 5 °C/km; also shown are broad compositional fields for four different rock types (Winkler 1979). In addition, tie-lines are drawn for P-T conditions outside the stability field of pyrope (solid lines) and for those P-T condition lying within the pyrope field (broken lines). Outside the stability field of pyrope, the pumpellyite phase may coexist with CaMgAl-pumpellyite and a Ca-bearing clinopyroxene in basaltic rocks, whereas it will occur with clinopyroxene and orthopyroxene in ultramafic rocks. In more felsic rocks (granites, pelites) coexistence with lawsonite plus kyanite or topaz-OH can be predicted. Thus, MgMgAl-pumpellyite is a possible phase in rocks having a diversity of bulk compositions. It should therefore be an important H₂O-bearing phase in rocks subducted along low geotherms. Its maximum temperature will be limited by its breakdown to form pyrope-bearing assemblages in nearly every kind of rock. Only Ca-free and Al-rich rocks (whose compositional fields lie close to the line MgMgAl-pumpellyte-kyanite in the ACF-diagram) that were metamorphosed under high-pressure conditions are possible candidates for rocks that may preserve the pumpellyite phase to higher P-T conditions.

On the other hand, it is doubtful whether MgMgAl-pumpellyite can be retained in any rocks brought to the Earth’s surface from these depths because any subsequent heating during retrograde metamorphism would cause it to break down into the assemblages indicated in Figure 2. The only way to preserve the pumpellyite phase during exhumation of a rock unit may be as an inclusion in a high-strength mineral such as garnet or zircon (Schertl and Schreyer 1996), in a fashion similar to the coesite inclusions found in pyrope from the Dora-Maira Massif, Italy (Chopin 1984).

Following Schreyer et al. (1991), who discussed the compatibility of MgMgAl-pumpellyite with dense hydrous magnesium silicates of the system MSH, it is of interest to determine which MSH phases are candidates for the inclusion in breakdown assemblages of MgMgAl-pumpellyite. The pumpellyite field overlaps with the stability fields of clinohumite-OH, chondrodite-OH, and Phase A (Fig. 5). The
overlapping region with chondrodite-OH is very small and the one with clinohumite-OH extends over a maximum temperature interval of about 50 °C. Thus, compatibility relations with these two phases are unlikely to be significant in natural rocks. On the other hand, the stability fields of pumpellyite and Phase A overlap each other almost completely, and it is therefore likely that there are compatibility relations of these phases. However, more experimental work must be done concerning an up-to-now hypothetical stability field of the two-phase assemblage pumpellyite plus phase A. As dense hydrous magnesium silicates were not observed among the experimental products in this study, as well as in the former ones by Schreyer et al. (1991) and Liu (1989), it is likely that they can be neglected for the low-pressure and high-temperature phase relations of MgMgAl-pumpellyite.

Future work should be done on the possible solid-solution between MgMgAl-pumpellyite and CaMg-pumpellyite and the P-T stability fields of this solid-solution. Replacement of Mg by Ca will certainly stabilize this phase toward lower pressures and lower temperatures (see Schreyer 1988). Another unexplored problem is the influence of Fe-Mg substitution. As a result the pumpellylite phase may be stable in subduction zones that had undergone metamorphism at higher gradients than 4 °C/km and may occur in this regime as an important rock-forming mineral, even though there is no record yet for the presence of FeMg-pumpellyite phases in natural rocks.

ACKNOWLEDGMENTS

This work was supported by Deutsche Forschungsgemeinschaft (grant Schr 64/59-3). Thanks are due to W. Schreyer, A. Pawley, and J.G. Liu for their critical reviews of the manuscript. The author is also grateful to C. Manning for his editorial help. Multiunivil experiments were carried out at the Bayerisches Geoinstitut under the EC “Human Capital and Mobility-Access to Large Scale Facilities” program (Contract No. ERBCHG-PECT940053 to D.C. Rubie). I am grateful to D. Rubie, D. Canil, M.W. Schmidt, and B. Poe at Bayreuth for their technical assistance. The author also thanks G. Andersen for his help in conducting piston-cylinder experiments up to 65 kbar. Figures were kindly prepared by R. Lehmann and A. Fischer.

REFERENCES CITED

Fockenberg, T. (1995) New experimental results up to 100 kbar in the system Mg₂Al₂O₄·SiO₂·H₂O (MASH): Preliminary stability fields of clorite, chloritoid, staurolite, MgMgAl-pumpellyite, and pyrope. Bochumer geologische und geotechnische Arbeiten, 44, 39-44.
(1996) Gleichgewichtsexperimente im system MgO-SiO₂-H₂O: Vorläufige stabilitätsfelder von klinohumit (Mg₃Si₂O₅(OH)₃), chondrotit (Mg₃Si₂O₅(OH)₃) und phase A (Mg₃Si₂O₅(OH)₃). Berichte der deutschen Mineralogischen Gesellschaft, Beiheft 1 zum European Journal of Mineralogy, 8, 321.

MANUSCRIPT RECEIVED MARCH 25, 1997
MANUSCRIPT ACCEPTED NOVEMBER 14, 1997