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Lattice simulation studies of the ferroelastic phase transitions in (Na,K)AISi30s and
(Sr,Ca)AI2Si20s feldspar solid solutions
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ABSTRACT

Lattice-energy minimization calculations have been performed on the feldspar systems
(Ca,Sr)AI2Si20g and disordered (Na,K)AlSi30g as functions of composition to simulate the
ferroelastic phase transitions 12lc-IT and C2Im-CT, respectively. In both cases the phase
transition occurs as a function of composition and is driven by the vanishing of the quantity
C44C66 - (16' without any of the individual elastic constants being strongly dependent on
composition and without softening of an optic mode. In both cases, the strains E4and E6
are proportional to each other for small values of strain, but nonlinear coupling becomes
dominant when IE41becomes larger than about 0.02. The results are consistent with exper-
imental data and explain the nature of coupling of the displacive transition to Al-Si or-
dering in Al:Si 2:2 feldspars.

INTRODUCTION

Both the (Ca,Sr)AI2Si20g "2:2" feldspars and the
(Na,K)AlSi30, "1:3" feldspars undergo ferroelastic phase
transitions as functions of composition at low tempera-
ture. The former display a generally ordered arrangement
of Al and Si over the tetrahedral sites, although some-
times with varying degrees of Al-Si order, whereas the
ferroelastic phase transition in the alkali feldspars occurs
only when the Al and Si are disordered over the tetra-
hedral sites (equivalent to the monalbite-high-albite tran-
si~on). The changes in space group are 12/c-IT and C2lm-
CI, respectively. In both cases, if the transition is a proper
ferroelastic the stability condition that is broken at the
symmetry change is C44C66 - (16 > 0 (Cowley 1976).
However, with such ferroelastic phase transitions the
question always arises as to whether or not the elastic
instability is precipitated by softening of an optic phonon
(necessarily at zero wave vector) rather than acoustic
softening. Recent theoretical work with the rigid-unit-
mode model (Hammonds et al. 1996), applied to the feld-
spar structure, suggests that there is not an optic insta-
bility but that there is considerable softening of the
acoustic modes, leading to the possibility that the ob-
served structural phase transitions in these feldspars are
due to intrinsic elastic instabilities. It is important to test
these predictions, not least because of their implications
for the thermodynamic modeling of these phase transi-
tions: If the transition is a proper ferroelastic the spon-
taneous strain is the order parameter and the excess free
energy may be written in terms of this strain explicitly,
rather than in terms of some unknown coupled order pa-
rameter. It is also of interest to enquire as to how the
stability condition C44C66- (16 > 0 is broken. This may
result from softening of either of the individual elastic
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constants C44 or C66, or else the combination C44C66-
(16 might be naturally soft and therefore extremely sen-
sitive to changes in temperature and chemical composi-
tion without any of the individual elastic constants soft-
ening on their own. Again, this issue has implications for
the thermodynamic modeling of the phase transition be-
cause different models predict different elastic behavior.

Although there is a large body of information on the
crystallographic details of these phase transitions, there
is none on the elastic constants. This reflects the experi-
mental difficulty in obtaining good elastic data on well-
characterized feldspar crystals as a function of composi-
tion or temperature. An alternative to experiment is the
use of lattice simulation methods with reliable interatomic
potentials. Here we present the results of a study of these
phase transitions using static lattice-energy minimization
and lattice dynamics calculations using empirical inter-
atomic potentials. We chose to work with a model that
simulates complete AI-Si disorder in the alkali feldspars
because, in these feldspars, the ordering process results
in the same symmetry change as the ferroelastic phase
transition. For the alkaline-earth feldspars we calculated
the solid solution at varying degrees of Al-Si order and
ascertained the relationship between the zone-center fer-
roelastic instability and the zone-boundary Al-Si ordering
process.

The details of the lattice-energy minimization and lat-
tice dynamics calculations have been described in several
studies (Price et al. 1987; Catlow 1988; Dove 1989;
Winkler et al. 1991; Patel et al. 1991). We used the
THBREL and THBPHON programs, which in several
ways are particularly suited for the simulation of silicates.
The pair interactions between atoms were modeled using
the standard Coulomb and Buckingham potentials:
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Charge (e) k (eV rad-') K(eV As)

o core 0.84819
Oshell -2.84819 74.92
Si 4 2.09724
AI 3 2.09724
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TABLE1. Numerical values of the parameters used in the
model pair potentials

0...0
Si...O
AI...O
Na...O
K...O
Ca...O
Sr...O

B (eV)

22764.0
1283.9073
1460.3
5836.885

65269.71
6958.3

17314.2

p (A)

0.149
0.32052
0.29912
0.2387
0.2130
0.2516
0.24

C(eV AS)

27.88
10.66158
0.0
0.0
0.0
0.0
0.0

Note: Parameters are defined in the text.

QQ C
<per,) = ~ - 6" + B exp(-rjp) (1)

47TE"ri} r ij

where the parameters C, B, and p depend only on the
atom pairs, and the charges Q were assumed to have for-
mal values. The 0 atoms were treated within the shell
model, where the anion is separated into a massless outer
shell and an inner massive core, the charge is partitioned
between the core and shell, and the core and shell interact
by a simple harmonic energy that depends on only the
separation d of the positions of the core and shell:

<p(d) = Y2Kd2.

The pair interactions described above are assumed to op-
erate only with the shell component of the 02- anion. The
final part of the model involves a term that depends on
the angle, e, that two 0 atoms subtend at a common
bonded Si or Al atom:

This interaction simulates part of the covalency inherent
in the Si04 and AI04 tetrahedra. The parameters used in
this model are given in Tables I and 2. They comprise a
transferable set of parameters obtained by using both em-
pirical and quantum mechanical methods, as described by
Price et al. (1987), Catlow (1988), Dove (1989), Winkler
et al. (1991), and Patel et al. (1991). The model was thor-
oughly tested in a wide range of simulations of silicates
by these authors and shown to be accurate for a wide
range of different silicate structure types. It should be
noted that the potentials were not optimized or adjusted
for the present study. A measure of the transferability of
these potentials is given by a comparison of the results
obtained from them for the static lattice minimization of
unit cells of the end-member feldspars of interest to us
and the observed unit-cell parameters of these structures.
From Table 3 we see that the three-body potential model
enables the accurate calculation of the structural proper-
ties of these feldspars.

Burnham (1990) reviewed some of the earlier compu-
tational work on end-member feldspar structures, focus-
ing on the work of Post and Burnham (1987), which used
two-body ionic potentials. Since then, further calculations
on low albite (Patel et al. 1991) and other ordered micro-
cline and anorthite (Purton and Catlow 1990) have been
performed as part of the development of transferable po-
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TABLE2. Numerical values of the ionic charges, core-shell
potential parameter, and bond-bending potential
parameter

Note: Parameters are defined in the text.

(2)

tentials incorporating three-body terms, and the results of
empirical fits, modified electron gas methods, and Har-
tree-Fock calculations. The agreement we obtained be-
tween modeled and observed structures (Table 3) is su-
perior to the studies of Post and Burnham (1987) and
Patel et al. (1991) and comparable with the accuracy sug-
gested by Purton and Catlow (1990) using the same
methods.

Because lattice-energy calculations are effectively clas-
sical simulations at absolute zero temperature, we mod-
eled the phase transitions through the dependence of the
crystal structure on chemical composition of the alkaline-
earth or alkali cations on the M site, changing from Ca2+
to Sr2+ in one case, and from Na+ to K+ in the other. Our
procedure used effective potentials for the M sites with
an occupancy x of one cation and (1 - x) of the other.
These effective potentials were formed using the condi-
tion that the first and second differentials of the effective
potential should be equal to the weighted mean of the
differentials of the pure potentials at the observed atomic
separation ro:

(3)

(4)

(Winkler et al. 1991). These conditions lead to equations
for the parameters in the functional form of the effective
potential, <p'flr). This procedure is equivalent to making
the standard mean-field approximation because it neglects
local fluctuations in the ordering. For the present purposes
this approximation is not significant. The same method
was used to obtain effective potentials for the tetrahedral
cations corresponding to various degrees of AI-Si order,
with x for the T sites of the alkali feldspars corresponding
to 0.25 AI, for example.

The lattice-energy calculations gave two types of re-
sults. First, the equilibrium crystal contains information
about the distortion of the structure through the mono-
clinic-to-triclinic spontaneous ferroelastic strains, as giv-
en for feldspars by Redfern and Salje (1987). For the
monoclinic-to-triclinic phase transitions the important
symmetry-breaking strains are



SrAI2Si2O. CaAI2Si2O. NaAISi,O. KAISi,O.

calc obs' calc obs' calc obs** calc obst

a (~) 8.316 8.395 8.181 8.139 8.180 8.154 8.584 8.539
b (~) 12.879 12.977 12.874 12.815 12.850 12.869 12.989 13.015
c (A) 14.037 14.270 14.174 13.890 7.056 7.107 7.134 7.179
a (') 91 .422 90 93.150 93.592 93.205 93.521 90 90
r3n 115.878 115.440 115.810 117.119 116.985 116.458 115.99 115.99

I'n 90.728 90 91.260 90.488 90.310 90.257 90 90
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TABLE 3. Comparison of calculated and observed unit-cell parameters for disordered end-member feldspars

.From McGuinn and Redfern (1994a).
.. Results for high albite from Prewitt et al. (1976).
tResults for sanidine from Phillips and Ribbe (1973).

E = ~
(

c cos 0:
+

a cos f3,T cos 'Y
)4 sin f3t Co aD

a cos 'YE=-6
aD

where the subscript 0 denotes the paraphase value, usu-
ally extrapolated from the observed behavior of the high-
symmetry phase to the conditions of interest in the sta-
bility field of the low-symmetry phase. However, the
static lattice calculations allow direct determination of the
paraphase cell parameters directly, without recourse to
this extrapolation. The second interesting result of the lat-
tice-energy calculations is the elastic constant matrix. The
important quantity to be derived from the elastic constant

13.0

116.0

, 15.8
90.4

:; 90.1

89
20 40 60 80 100 a 20 40 60 80 100

mol% KAISi308 mol% KAISi308

FIGURE 1. Composition dependence of the calculated unit-
cell parameters of disordered (Na,K)AlSi30, feldspars. Dashed
lines show the behavior of the cell parameters of the (metastable)
paraelastic monoclinic structure in the stability field of the tri-
clinic structure.

matrix when considering the triclinic-monoclinic behav-
ior of feldspars is the product combination C44C66- C~6'

(5) C2/m-Cl PHASE TRANSITION IN DISORDERED
(Na,K)AISi30S

Lattice-energy calculations

Starting from the triclinic disordered structure of
NaAISi,08 given by Prewitt et al. (1976), with a single
average position for the M site, we conducted static lat-
tice calculations across the solid solution. The tetrahedral
site occupancies were set at a completely disordered con-
figuration by using a mixed potential corresponding to
0.25 Al and 0.75 Si on each T site, employing the method
described by Equation 4. The structure minimized to a
triclinic cell for Na-rich compositions, but the triclinic
structure became increasingly unstable (as determined by
lattice energies) with respect to the monoclinic paraphase
with increasing K content. The paraphase could be sim-
ulated as a metastable solution in the triclinic stability
field by minimizing from monoclinic starting coordinates
(using those for sanidine given by Phillips and Ribbe
1973). Hence, properties such as spontaneous strain can
be accurately calculated without any need to extrapolate
the monoclinic cell parameters from those calculated for
K-rich compositions.

The unit-cell parameters obtained from the lattice-er.-
ergy calculations are given in Figure 1, and Figure 2a is
a plot of the spontaneous strain components E4 and E6 as
functions of K + content. The results are broadly consis-
tent with the experimental observations, with the phase
transition at T = 0 K occurring at a composition of about
22.5 mol% KAISi308. Although this K content is signif-
icantly lower than that of about 34.4 mol% KAISi308 ob-
served experimentally (Kroll et al. 1986), it is noteworthy
that the simple transferable potential employed here rep-
licates the phase transition at all in such a complex alu-
minosilicate material because it represents a very small
energetic perturbation of the total computed lattice ener-
gy. Although the composition predicted for the phase
transition by computation is somewhat more albitic than
that observed in real crystals, it must be remembered that
the energy surface becomes very shallow close to the
transition and the discrepancy in composition is likely to
result from a small error in the formulation of the poten-
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FIGURE 2. (a) Composition dependence of the calculated
strains E4and E6in disordered (Na,K)AISi30, feldspar. (b) Com-
parison of the measured (Orville 1967) and calculated triclinic ex
and 'Ycell angles in disordered triclinic alkali feldspars shown as
a function of reduced composition (where Xc is the phase-tran-
sition composition).

tial for one of the end-member M cations. Nonetheless,
the general trends and even the detailed structural behav-
ior below the transition are replicated remarkably well.
The spontaneous strains, for example, are seen to be con-
sistent with the experimentally observed behavior, when
the calculated and experimentally observed results appear
together on a scale of reduced composition (Fig. 2b). This
implies that the computed elastic properties are similarly
reliable. We observe that E6 and E4 are linearly related

close to the transition, becoming increasingly nonlinear
(due to a reduction in E6)near the albite end-member (Fig.
3), as is also observed experimentally (with the 'Y angle
becoming smaller near the albite end-member, Fig. 2b).

The computed elastic constants C44, C66>and C46of the

0.000

-0.001

-0.002

-0.003
~O.04 -0.03 -0.02 -0.01 0.00

FIGURE 3. Relationship between the strains E4 and E6 in dis-

ordered (Na,K)AlSi30s feldspar.
30

alkali feldspars are shown in Figure 4, along with the
critical combination C44C66 - Q6' There is a weak de-
pendence of the individual elastic constants on K+ con-
tent, with C44 varying the most and C66 varying least, but

because of the relative softness of C46 at all compositions
the combination C44C66 - Q6 becomes very sensitive to
K + content. It can be seen that C44C66- Q6 falls to zero

at the phase transition, a behavior that is consistent with
a proper ferroelastic phase transition driven by an acous-
tic instability.

Lattice dynamics calculations

The calculated frequency of the lowest energy optic
phonon with zero wave vector vs. K + content demon-
strates that the elastic instability is not accompanied by
any optic phonon softening, so that the transition is driven
by an elastic softening alone (Fig. 5). In this way, we see
that lattice dynamic and static lattice calculations can
identify the important mechanisms associated with these
types of phase transitions in complex solids.

12/c-Il PHASE TRANSITION IN
(Ca,Sr)AI2Si20s

Calculations on the AI-Si ordered solid solution

The monoclinic-to-triclinic transition in the (CaxSr1_J
.AI2Si20s feldspar solid solution is of interest because this
system provides a means of investigating coupling be-
tween AI-Si order-disorder and ferroelastic behavior in
the 2:2 AI:Si anorthite structure. Although II anorthite
remains highly ordered up to its melting point, there is
nonetheless a measurable decrease in AI-Si order with
temperature as the structure approaches a transition to a
disordered CI state (Carpenter et al. 1990). A further
transition from CI to C2/m is anticipated at even higher
temperatures (Carpenter 1992). The coupling between the
zone-center monoclinic-to-triclinic transition and the
zone-boundary tetrahedral order-disorder process can be
investigated experimentally across the (Ca,Sr)AI2Si20,
solid solution, where substitution of Sr for Ca induces a
phase transition from II to I2/c near the SrAlzSi20s end-
member (McGuinn and Redfern 1994a, 1994b; Tribau-
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FIGURE 4. (a) Composition dependence of the elastic con-
stants C44,C66,and C46in disordered (Na,K)AISi,Os feldspar. Sol-
id lines show the computed elastic constants of the C2/m struc-
ture, and dashed lines show the elastic constants of the relaxed
Cl structure. (b) Composition dependence of the critical com-
bination of elastic constants, C44C66 - Q6' in disordered
(Na,K)AISi,O, feldspar, showing that this combination passes
through zero at the C2/m-CT phase transition.

dino et al. 1993). We used mixed potentials for the M
site to model this phase transition as a function of com-
position for (Ca,Sr)AI2Si20s feldspars with perfect AI-Si
order, and for the same solid solution with lower degrees
of AI-Si order, and are able to identify the driving mech-
anisms and pertinent structural responses associated with
the displacive phase transition.

We used the known structures of .!.he 12/c SrAI2SizOs
end-member (Chiari et al. 1975) and II anorthite (Kemps-
ter et al. 1962) for our starting coordinates and succes-
sively computed the properties of triclinic and monoclinic
members of the intermediate solid solution in a manner
analogous to that described above for the disordered al-
kali feldspars. In the (CaxSr,_JAI2Si20s solid solution,
however, the results indicate that the triclinic phase is

3.0

1.0
o 20 40 60 80 100

a FIGURE 5. Composition dependence of the frequency of the
lowest lying optic (k = 0) phonons in disordered (Na,K)AISi,O"
demonstrating that the C2/m-CT phase transition is not accom-
panied by optic softening.

stable across the whole composition range at 0 K, which
is in agreement with the anticipated form of the temper-
ature-composition phase diagram described by Tribaudino
(1994). The computational method adopted here enables
fictive compositions beyond the end-members to be
probed, however, by simply computing structures with
negative Ca content (setting x < 0 in the formula unit
and Equation 4). For example, a transition to 12/c would
occur for completely ordered (Ca,Sr)AlzSizOs feldspars
near 102.5 mol% SrA12SizOs, as is shown by Figure 6.
The nature of the elastic instability is revealed by the
behavior of the C44' C66,and C46elastic constants. Lattice
dynamic calculations across the solid solution demon-
strate that the transition results from elastic instability
alone, with no significant softening of optic modes (Fig.
7). Similar to the alkali feldspar solid solution, the results
indicate that the transition is driven by the softening of
the combination c.4C66- (16' which goes to zero at the
transition. The discontinuities in the computed cell pa-
rameters (and derived spontaneous strains) and elastic
constants indicate that the transition is first order in char-
acter, although not strongly so.

The computational results show that, because the tran-
sition is driven by only an acoustic instability, the strain
E4behaves as the primary order parameter for the ferro-
elastic transition. The other nonzero strain, En' is coupled
to E4 in a highly nonlinear manner (Fig. 8). In fact, the
coupling between E6 and E4 in this solid solution is similar
to that shown in the alkali feldspars (Fig. 3), the only
difference being that the transition in the (Ca,Sr)AI2SizOs
feldspars is first-order: The linear (small strain) regime is
not observed, and the values of E6 and E4 bypass the linear
region upon transformation to the triclinic phase. It has
long been known that ferroelastic transitions most strong-
ly influence the a cell angle in feldspars (e.g., Salje et al.
1985). The "y cell angle has previously been recognized
to vary nonuniformly with a in triclinic feldspars. It has
also been demonstrated, however, that AI-Si order-disor-
der (described by an order parameter Qod) most strongly
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FIGURE 6. (a) Composition dependence of the elastic con-
stants C44' C66, and C46 in ordered (Ca,Sr)AI2Si208 feldspar. (b)
Composition dependence of the critical combination of elastic
constants, C44C" - q" in ordered (Ca,Sr)AI2Si20, feldspar. Solid
lines show the computed elastic constants of the 12/c structure,
and dashed lines show the elastic constants of the relaxed II
structure.

affects 'Y.Hence, nonlinearity between exand 'Yat displa-
cive transitions in feldspars has previously been attributed
to coupled changes in AI-Si order, which induce varia-
tions in 'Y. Our results show, however, that such nonlin-
earity between the two triclinic cell angles occurs inher-
ently in the absence of changes in AI-Si order, and
possible variations in QOd need not be invoked to explain
the apparently strange composition dependence of 'Y.We
notice th~t 'Y increases from zero at the transition from
12/c to II and then decreases on further increase of Ca
content. Because we know that Qod couples strongly and
positively to 'Y,we might expect these marked changes in

'Yto favor an increase in QOd across the phase transition
with a subsequent gradual reduction in QOd with increas-
ing Ca content. Such a change in AI-Si order associated
with increasing Ca content across the 12/c-to-Il phase

1.6

0.6

0.4
o 20 40 80 10060

FIGURE 7. Composition dependence of the frequency of the
lowest lying optic (k = 0) phonons in ordered (Ca,Sr)AI2Si208.

The solid line shows the composition dependence of the lowest
lying optic phonon in the monoclinic phase, and the dashed line
shows the same for the relaxed triclinic structure. The results
demonstrate that the 12/c-Il phase transition is not driven by
optic softening but reveal that the coupling occurs between the
optic hard-mode frequency and the strain behavior.

transition has indeed been observed experimentally in a
recent NMR study (Phillips et a1. 1997).

Influence of AI-Si order on the I2/c-to-if transition

We also examined the influence of AI-Si order on the
12/c-to-Il transition by conducting static lattice calcula-
tions of the (CaxSr,_JAI2Si20s solid solution with varying
degrees of QOd(2y - I, where y is the amount of Al on
a T site that contains 100% Al in the ordered phase). The
results are summarized in Figures 9 and 10, where they
are presented together with the experimentally observed
room-temperature cell parameters given by McGuinn and
~dfern (1994a). The composition at which the 12/c-to-
Il phase transition occurs, XC' moves toward that of an-
orthite with decreasing Qod' and the transition becomes

0.000

-0.002

elf-0.004

-0.006

-0.008
-0.04 -0.03 -0.02 -0.01 0.00

FIGURE 8. Relationship between the strains E4 and E6in or-
dered (Ca,Sr)AI2Si208 feldspar. The relationship is similar to that
shown for alkali feldspars (Fig. 3), but because the 12/c-Il phase
transition is computed as first order at 0 K, the observed strains
fall in the region of strong nonlinearity.
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FIGURE 9. Composition dependence of the 0 K computed
(lines) and 293 K observed (points; McGuinn and Redfern
1994a) cell parameters of (Ca,Sr)AI2Si,O, feldspars. Calculations
for feldspars with tetrahedral Al-Si order (Qod) ranging from 1.0
to 0.4 are shown, and large arrows indicate the general trend of
each cell parameter on increasing disorder. In the plot of (X and
"y,(X is shown by solid lines (computed) and open squares (ob-
served), and "y is shown by dashed lines (computed) and solid
diamonds (observed).

less first order in character (as shown by the slope at
which the critical combination of elastic constants ap-
proaches zero as a function of composition). Tribaudino
et al. (1993, 1995) observed that for disordered samples,
which have Tc near room temperature, grains of both
monoclinic and triclinic material coexist, suggesting that
the transition becomes more first order on increasing
Al-Si disorder. However, the possibility of chemical in-
homogeneity within their samples was not fully ad-
dressed, and this may also be expected to induce a two-
phase, apparently first-order regime near the transition
point. In contrast, our model simulates a perfectly ho-
mogeneous, completely mean-field behavior, neglecting
the effects of compositional or entropic fluctuations. In
addition, Tribaudino et al. (1993) indicated that Xc shifts
toward anorthite by IS mol% or more for the disordered
solid solution. Our 0 K calculations indicate that Xc
moves only 5 mol% or less toward anorthite for the fully
disordered solid solution. In this case, the effect of Al-Si
disorder on the T-X phase diagram of (CaxSr,_JAI2Si20g
feldspar~ is not only to shift the phase boundary of the
12/c-to-Il transition toward anorthite, but also to reduce
the slope, dT/dX, of that phase boundary (Fig. 11).

2

o
60 65 70 75 80 85 90 95 100 105 110

mol% SrAlzSizOs

FIGURE 10. Composition and Qod dependence of the critical

combination of elastic constants, C44C66 ~

0.6' in (Ca,Sr)AI2Si,O,
feldspars. Decreasing order shifts the composition at which the
I2/c-Il phase transition occurs toward CaAl,Si,O, and makes the
transition less first order in character.

DISCUSSION

Mechanism of the monoclinic-to-triclinic ferroelastic
phase transition in feldspars

Our calculations indicate that the monoclinic-to-triclin-
ic ferroelastic phase transition in feldspars is driven by
an instability associated with the combination of elastic
constants C44C66- Q6' rather than the softening of an
optic phonon. The elastic instability does not result from
softening of a single elastic constant, but strictly as the
balance between the three elastic constants.

These results can be compared with the rigid-unit-
mode (RUM) analysis of the stability of feldspar by Ham-
monds et al. (1996). This work showed that there is no
low-energy optical distortion of the structure possible at
k = 0, but there is a general softening of several of the
acoustic modes. Furthermore, the RUM model suggests
that the elastic properties are determined by the forces
associated with flexing of the T-0- T bonds and the in-
teractions between alkali cations and the 02- anions rath-
er than the stiffness of the T04 tetrahedra. Thus, the pres-
ent study confirms the prediction of the RUM model that
the monoclinic-to-triclinic phase transition in feldspar is
driven by an elastic softening.

Use of lattice-energy calculations of displacive
phase transitions

The fact that we observed phase transitions at all in
the solid solutions studied further validates the potential
model that we employed. Much has been written on the
model, particularly with reference to its ability to be
transferred to different aluminosilicates and still retain its
predictive power (Price et al. 1987; Catlow 1988; Dove
1989; Winkler et al. 1991; Patel et al. 1991). In the pres-
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FIGURE 11. Schematic of the effect of tetrahedral disorder on
the expected T-X phase diagram of (Ca,Sr)AI2Si20s feldspars.
Disorder shifts the phase boundary toward CaAl2Si20, and re-
duces its T-X slope.

ent case it is essential that the potential energy has a
shallow minimum that allows for easy distortion of the
structure and has a shape that can change from a single
minimum to a double minimum across the concentration
range. This results from a very delicate balance between
the interatomic interactions, which could in principle be
significantly affected by small errors in the model. The
success of the present model indicates that it captures the
essential physical picture; the fact that the calculated crit-
ical compositions do not exactly match experiment is
simply a reflection of the delicate nature of this balance.
It is worth noting that the same model was also able to
reproduce the main features associated with the displacive
phase transition in leucite (Dove et al. 1993).
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