American Mineralogist, Volume 99, pages 1104-1108, 2014

Electrical conductivity of synthetic mullite single crystals

MOHAMMED MALKI^{1,2,*}, JÜRGEN SCHREUER³ AND HARTMUT SCHNEIDER^{4,5}

¹CEMHTI, Conditions Extrêmes et Matériaux: Haute Température et Irradiation, CNRS UPR 3079, 1D avenue de la Recherche Scientifique, 45071 Orléans cedex 2. France

²Ecole Polytechnique de l'Université d'Orléans, 45072 Orléans, France

³Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany ⁴Institut für Kristallographie, Universität zu Köln, Greinstrasse 6, 50939 Köln, Germany ⁵Fachbereich Geowissenschaften, Universität Bremen, Klagenfurter Strasse, 28334 Bremen, Germany

ABSTRACT

The electrical conductivity of 2/1-mullite (approximate composition $2Al_2O_3$, SiO₃) was measured using plane parallel, polished plates cut perpendicular to [100], [010], and [001] from a large single crystal grown by the Czochralski method. Impedance spectra were recorded in the 1 Hz to 1 MHz frequency range at temperatures from 550 to 1400 °C in air. The conductivity vs. temperature curves display changes of their slope between 850 and 950 °C depending on the crystallographical direction. The low-temperature region (T < 850 °C) of conductivity is characterized by low-electrical conductivities ($\sigma_{av} \approx 5.4 \times 10^{-9}$ Ω^{-1} cm⁻¹, average conductivity at 550 °C) with $\sigma_{0101} > \sigma_{0101} > \sigma_{0011}$ and low-activation energies (≈ 0.66 eV, average value). In the high-temperature region (T > 950 °C) the electrical conductivity is significantly higher ($\sigma_{av} \approx 1.1 \times 10^{-5} \,\Omega^{-1} \text{cm}^{-1}$, average conductivity at 1400 °C) with $\sigma_{[001]} > \sigma_{[100]} \approx \sigma_{[010]}$, and with higher activation energies (≈ 1.6 eV). While the conductivity in the low-temperature region essentially is electronic, ion conductivity dominates the conductivity in the high-temperature region. We believe that the ionic conductivity is essentially due to hopping of O atoms from structural sites linking the tetrahedral double chains in mullite toward adjacent oxygen vacancies especially in c-axis direction. These oxygen hoppings are associated with complex structural re-arrangements, which control and slow down the velocity of the processes. Thus the electrical conductivity of mullite at high temperature is much lower than, e.g., that of Y-doped zirconia, but is significantly higher than that of α -alumina.

Keywords: Mullite, single crystals, electrical conductivity, high temperature