Vanadio-oxy-chromium-dravite, NaV₃(Cr₄Mg₂)(Si₆O₁₈)(BO₃)₃(OH)₃O, a new mineral species of the tourmaline supergroup

FERDINANDO BOSI^{1,3,*}, LEONID REZNITSKII², HENRIK SKOGBY³ AND ULF HÅLENIUS³

¹Dipartimento di Scienze della Terra, Sapienza Università di Roma, P.le A. Moro, 5, I-00185 Rome, Italy ²Russian Academy of Science, Siberian Branch, Institute of the Earth's Crust, Lermontova strasse, 128, Irkutsk, Russia ³Department of Geosciences, Swedish Museum of Natural History, Box 50007, SE-10405 Stockholm, Sweden

ABSTRACT

Vanadio-oxy-chromium-dravite, NaV₃(Cr₄Mg₂)(Si₆O₁₈)(BO₃)₃(OH)₃O, is a new mineral of the tourmaline supergroup. It is found in metaquartzites of the Pereval marble quarry (Sludyanka, Lake Baikal, Russia) in association with quartz, Cr-V-bearing tremolite and muscovite-celadonite-chromphyllite-roscoelite, diopside-kosmochlor-natalyite, Cr-bearing goldmanite, escolaite-karelianite, dravite-oxy-vanadium-dravite, V-bearing titanite and rutile, ilmenite, oxyvanite-berdesinskiite, shrey-erite, plagioclase, scapolite, zircon, pyrite, and an unnamed oxide of V, Cr, Ti, U, and Nb. Crystals are emerald green, transparent with a vitreous luster, pale green streak, and conchoidal fracture. Vanadio-oxy-chromium-dravite has a Mohs hardness of approximately 7¹/₂, and a calculated density of 3.3 g/cm³. In plane-polarized light, vanadio-oxy-chromium-dravite is pleochroic (O = dark green, E = pale green) and uniaxial negative: $\omega = 1.767(5)$, $\varepsilon = 1.710(5)$. Vanadio-oxy-chromium-dravite is rhombohedral, space group *R*3*m*, with the unit-cell parameters *a* = 16.1260(2), *c* = 7.3759(1) Å, *V* = 1661.11(4) Å³, *Z* = 3. Crystal chemistry analysis resulted in the empirical structural formula:

 ${}^{x}(Na_{0.89}K_{0.06}\square_{0.05}) {}^{v}(V_{2+7}^{4+}Mg_{0.17}Fe_{0.06}^{3+}) {}^{z}(Cr_{1.85}^{2+}Al_{1.59}V_{0.78}^{3+}Mg_{1.78}) {}^{T}[(Si_{5.95}Al_{0.05})O_{18}] \\ {}^{B}(BO_{3})_{3} {}^{v}(OH_{2.91}O_{0.09}) {}^{w}(O_{0.86}F_{0.14}).$

The crystal structure of vanadio-oxy-chromium-dravite was refined to a statistical index *R*1 of 1.16% using 2543 unique reflections collected with MoK α X-radiation. Ideally, vanadio-oxy-chromium-dravite is related to oxy-chromium-dravite and oxy-vanadium-dravite by the homovalent substitution V³⁺ \leftrightarrow Cr³⁺. Tourmaline with chemical compositions classified as vanadio-oxy-chromium-dravite can be either Cr³⁺-dominant or V³⁺-dominant as a result of the compositional boundaries along the solid solution between Cr³⁺ and V³⁺ that are determined at ^{Y+Z}(V₅Cr₂), corresponding to Na^Y(V₃)^Z(V₂Cr₂Mg₂) Si₆O₁₈(BO₃)₃(OH)₃O, and ^{Y+Z}(V_{1.5}Cr_{5.5}), corresponding to Na^Y(V_{1.5}Cr_{1.5})^Z(Cr₄Mg₂)Si₆O₁₈(BO₃)₃(OH)₃O.

Keywords: Vanadio-oxy-chromium-dravite, tourmaline, new mineral species, crystal-structure refinement, electron microprobe, infrared spectroscopy, optical absorption spectroscopy