American Mineralogist, Volume 99, pages 908-913, 2014

SPINELS RENAISSANCE: THE PAST, PRESENT, AND FUTURE OF THOSE UBIQUITOUS MINERALS AND MATERIALS High-pressure behavior of thiospinel CuCr₂S₄†

MATTEO ALVARO^{1,2,*}, FABRIZIO NESTOLA¹, NANCY ROSS², M. CHIARA DOMENEGHETTI³ AND LEONID REZNITSKY⁴

¹Dipartimento di Geoscienze e Georisorse, Università degli Studi di Padova, Via Gradenigo 6, 35122 Padova, Italy ²Department of Geosciences, Crystallography Lab, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, U.S.A. ³Dipartimento di Scienze della Terra e dell'Ambiente, Università degli studi di Padova, Via A. Ferrata 1, 27100 Pavia, Italy ⁴Institute of the Earth's Crust, Siberian Branch, Russian Academy of Science, Lermontova str., 128, 664033 Irkutsk, Russia

ABSTRACT

This study reports for the first time the lattice parameters and the complete crystal structure evolution with increasing pressure for a thiospinel with composition $\text{CuCr}_{1.7}V_{0.3}S_4$ (space group $Fd\overline{3}m$) measured by single-crystal X-ray diffraction as a function of pressure up to 7 GPa. The *P*-*V* data are adequately described to a fourth-order Birch-Murnaghan equation of state with the following coefficients: $V_0 = 947.86(6)$ Å³, $K_{T0} = 88(1)$, and K' = 6.3(9), K'' = -1.1(4). This is the first time that the compressibility behavior of a spinel structure has been described by a fourth-order Birch-Murnaghan equation of state. The unit-cell volume shows a compression of about 6.3% over the entire pressure range investigated. The crystal structure evolution clearly indicates that the main compression mechanism is related to the compression of the CuS₄ tetrahedron, which is significantly greater than the CrS₆ octahedron. The tetrahedral volume decreases by 7.8% over the pressure range studied while the octahedral volume decrease in the angular distortion of the CrS₆ octahedra.

Keywords: Thiospinel, high pressure, single-crystal X-ray diffraction