Cubic perovskite polymorph of strontium metasilicate at high pressures

WANSHENG XIAO^{1,*}, DAYONG TAN¹, WEI ZHOU¹, JING LIU² AND JIAN XU³

¹Kev Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China ²Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China ³Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; and Institute of Fluid Physics, China Academy of Engineering Physics, Mianvang 621900, China

ABSTRACT

By using a diamond-anvil cell (DAC) with laser heating technology, a cubic perovskite polymorph of SrSiO₃ has been synthesized at ~38 GPa and 1500–2000 K for the first time. The P-V data of this new phase give ambient temperate elastic constants of $V_0 = 49.18(5)$ Å³, $K_0 = 211(3)$ GPa, respectively, when they are fitted against the Birch-Murnaghan equation of state with a fixed K_0' at 4. On decompression, the SrSiO₃ cubic perovskite phase becomes unstable at ~ 6.2 GPa and disappears completely at \sim 4.7 GPa. The transformed product can be considered as an amorphous phase with a minor amount of small sized crystals in the amorphous matrix. First principle calculations predicted structural properties of both the cubic and the six-layer-repeated hexagonal perovskite polymorphs of $SrSiO_3$ in good agreement with experimental results. The experimental and theoretical results indicate that the larger Sr^{2+} cation can substitute the Ca^{2+} cation and enter into the lattice of the cubic perovskite phase of CaSiO₃ at lower mantle conditions with only a small lattice strain. These results indicate that Sr can be hosted in cubic perovskite CaSiO₃ found as inclusions in diamonds originating from the lower mantle.

Keywords: SrSiO₃, cubic perovskite, high pressure, equation of state