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Monazite is ubiquitous in the geological realm (Overstreet 
1967). Its compositional and isotopic response to changes in 
intensive and extensive rock parameters has made it an increas-
ingly important component of integrated pressure-temperature-
deformation-composition-time (P-T-D-X-t) studies, particularly 
in complex poly-metamorphic terranes (Janots et al. 2012; Kelly 
et al. 2012; Langille et al. 2012). The utility of monazite also 
includes its role in understanding igneous, sedimentary, and 
hydrothermal systems (Dumond et al. 2008; Mahan et al. 2010; 
Aleinikoff et al. 2012), and more recently, as a means for examin-
ing repositories of radioactive waste (Oelkers and Montel 2008).

Since the broader potential applications of monazite as a 
geochronometer were described by Parrish (1990), several 
significant developments have since occurred that allow for 
the routine compositional and isotopic analysis of monazite by 
a variety of techniques. These include technological advances 
in electron-probe microanalysis (EPMA: Suzuki and Adachi 
1991; Montel et al. 1996; Pyle et al. 2005; Williams et al. 2007; 
Jercinovic et al. 2008), secondary ion mass spectrometry (SIMS: 
Zhu et al. 1997; Bosch et al. 2002), laser ablation-inductively 
coupled plasma-mass spectrometry (LA-ICP-MS: Machado 
and Gauthier 1996; Košler 2001; Horstwood et al. 2003), iso-
tope dilution-thermal ionization mass spectrometry (ID-TIMS: 
Hawkins and Bowring 1997; Crowley et al. 2009), and micro-
XRF (Cheburkin et al. 1997; Engi et al. 2002). While U-(Th)-Pb 
dating of monazite is well established, in situ isotopic analytical 
techniques (SIMS, LA-ICP-MS) are now being applied to the 
Sm-Nd system in monazite (McFarlane and McCulloch 2007; 
Gregory et al. 2009; Fisher et al. 2011; Iizuka et al. 2011; Liu et 
al. 2012). Advances in laser and multi-collector detector technol-
ogy also enable accurate measurement of isotopic abundances 
from exceptionally small sample volumes of monazite (Cottle et 

al. 2012), while developments in chemical abrasion-TIMS tech-
niques (without high-temperature annealing) may provide even 
more high-precision data for monazite (Peterman et al. 2012).

In addition to more traditional aspects of high-temperature 
geochronology and the integration of monazite into constraining 
deformation histories (e.g., Williams and Jercinovic 2012), new 
techniques are continually being developed that have expanded 
the numbers of geological problems to which monazite may be 
applied. These applications include: low temperature (U-Th)/
He thermochronology for constraining cooling ages (Boyce et 
al. 2009), detrital monazite geochronology (Hietpas et al. 2011), 
understanding mechanisms for alteration via dissolution-repre-
cipitation (Harlov et al. 2011; Williams et al. 2011; Wawrzenitz 
et al. 2012), and incorporating monazite phase relations into 
thermodynamic phase equilibria (Kelsey et al. 2008; Spear 2010).

The value of monazite is not restricted to the Earth sciences. 
The ability of monazite to accommodate significant quantities of 
naturally occurring actinides (Th and U) makes it an attractive 
natural analog for studying the long-term effects of radioactive 
decay on the structural and crystallographic properties of phos-
phate-based materials that have been proposed for isolation and 
storage of radioactive waste (Oelkers and Montel 2008). Other 
applications in materials science include studying the proton-
conductivity of rare earth element phosphates for applications 
in hydrogen-based clean energy technologies (Amezawa et al. 
1998; Norby and Christiansen 1995). Last, monazite is mined or 
quarried at various localities around the world as a source of light 
rare earth elements that are increasingly important commodities 
for high-technology industries (Chakhmouradian and Wall 2012).

The papers assembled for the launch of this special issue result 
from presentations made at a special theme session convened 
at the 2011 Geological Society of America Annual Meeting in 
Minneapolis, entitled “Monazite: The ultimate geologic record.” 
Oral contributions and posters were presented in two well-
attended sessions, and we thank all the participants for making 
them such a success. During the development of this special 
collection for American Mineralogist, the title was changed to 
reflect the diversity of contributions received, which covered a 
broad spectrum of mineralogy, geochronology, geochemistry, 
petrology, tectonics, as well as materials science. We thank the 
authors who have contributed manuscripts for the launch of 
this special collection and the reviewers for their careful and 
valued comments. We hope more contributions will be added as 
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time goes by, and we sincerely thank the staff and the editors of 
American Mineralogist for the invitation to work with them in 
publishing a series of papers that truly demonstrate the diversity 
and versatility of monazite-related science.
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