American Mineralogist, Volume 98, pages 1095–1105, 2013

MINERALS IN THE HUMAN BODY Crystal chemistry of cement-asbestos†

ALBERTO VIANI,^{1,*} ALESSANDRO F. GUALTIERI,¹ MICHELE SECCO,^{2,3} LUCA PERUZZO,⁴ GILBERTO ARTIOLI,^{2,3} AND GIUSEPPE CRUCIANI⁴

¹Dipartimento di Scienze della Terra, Università di Modena e Reggio Emilia, I-41121 Modena, Italy ²Dipartimento di Geoscienze, Università degli Studi di Padova, I-35131 Padova, Italy ³CIRCe, Centro Interdipartimentale di Ricerca per lo Studio dei Materiali Cementizi e dei Leganti Idraulici, Università degli Studi di Padova, I-35131 Padova, Italy ⁴CNR Istituto di Geoscienze e Georisorse, Via Gradenigo 6, I-35131 Padova, Italy

⁵Dipartimento di Scienze della Terra, Sez. Mineralogia, Petrologia e Geofisica, Università di Ferrara, I-44100 Ferrarra, Italy

ABSTRACT

A study of a representative number of cement-asbestos (CA) samples removed from different localities in Italy has been accomplished with a combination of analytical techniques, including XRF, XRPD, SEM/EDS, micro-Raman, and electron backscattered diffraction (EBSD), to elucidate the mineralogical and chemical variability of this class of building materials on a large scale. We describe a complex mineralogy including phases of cement hydration, residual non-hydrated components, and a relevant fraction attributed to various processes of deterioration. With the aid of the CaO-MgO-SiO₂ compositional diagram, three groups of CAs have been identified on the basis of their chemical parameters. This result is important for environmental and waste management issues.

Keywords: Cement-asbestos, Rietveld method, CaO-MgO-SiO₂, carbonation, SEM, EBSD