Aluminum ordering and clustering in Al-rich synthetic phlogopite: The influence of fluorine investigated by {¹⁹F/¹H} ²⁹Si CPMAS NMR spectroscopy

MICHAEL FECHTELKORD* AND RAMONA LANGNER[†]

Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany

ABSTRACT

The influence of fluorine on cationic and anionic ordering in the mica mineral phlogopite has been investigated using ²⁹Si, ¹H, and ¹⁹F MAS as well as {¹H}/{¹⁹F} \rightarrow ²⁹Si CPMAS and CP-depolarization NMR spectroscopies. It can be shown that the mere presence of fluorine achieves a tremendous loss of capability to incorporate aluminum into the phlogopite structure. Fluorine is usually located in Mg-rich octahedral and Si-rich tetrahedral clusters of the phlogopite structure while hydroxyl groups are located in Al-rich octahedral and tetrahedral clusters as derived from {¹H}/{¹⁹F} \rightarrow ²⁹Si CPMAS NMR spectroscopies. The ordering effect in these two basic structural clusters can also be proven by a smaller ²⁹Si linewidth in the {¹⁹F} \rightarrow ²⁹Si CPMAS NMR experiments showing a stronger ordering of Si environments near the two different anion types fluorine and hydroxyl. Intensities of the {¹H}/{¹⁹F} \rightarrow ²⁹Si CPMAS NMR signals as function of the contact-time show a deviation from the classical I-S model and can be attributed to the *I-I*-S* model. Time constants like the proton/fluorine spin-lattice time in the rotating frame (*T*_{1p}) were extracted to give information about the local structure.

Keywords: 1H, 19F, 29Si, solid state, NMR, MAS, CPMAS, depolarization, phlogopite, fluorine