Hydrokenomicrolite, (□,H₂O)₂Ta₂(O,OH)₆(H₂O), a new microlite-group mineral from Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil

MARCELO B. ANDRADE,^{1,*} DANIEL ATENCIO,² NIKITA V. CHUKANOV,³ AND JAVIER ELLENA¹

¹Departamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970 São Carlos, SP, Brazil

²Departamento de Mineralogia e Geotectônica, Instituto de Geociências, Universidade de São Paulo, Rua do Lago 562, 05508-080 São Paulo, SP, Brazil

³Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region 142432, Russia

ABSTRACT

Hydrokenomicrolite, $(\Box, H_2O)_2Ta_2(O,OH)_6(H_2O)$ or ideally $\Box_2Ta_2[O_4(OH)_2](H_2O)$, is a new microlite-group mineral approved by the CNMNC (IMA 2011-103). It occurs as an accessory mineral in the Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil. Associated minerals are: microcline, albite, quartz, muscovite, spodumene, "lepidolite", cassiterite, tantalite-(Mn), monazite-(Ce), fluorite, "apatite", beryl, "garnet", epidote, magnetite, gahnite, zircon, "tourmaline", bityite, and other microlite-group minerals under study. Hydrokenomicrolite occurs as euhedral octahedral crystals, occasionally modified by rhombododecahedra, untwinned, from 0.2 to 1.5 mm in size. The crystals are pinkish brown and translucent; the streak is white, and the luster is adamantine to resinous. It is non-fluorescent under ultraviolet light. Mohs hardness is $4\frac{1}{2}-5$, tenacity is brittle. Cleavage is not observed; fracture is conchoidal. The calculated density is 6.666 g/cm³. The mineral is isotropic, n_{calc} = 2.055. The infrared spectrum contains bands of O-H stretching vibrations and H-O-H bending vibrations of H_2O molecules. The chemical composition (n = 3) is [by wavelength-dispersive spectroscopy (WDS), H₂O calculated from crystal-structure analysis, wt%]: CaO 0.12, MnO 0.27, SrO 4.88, BaO 8.63, PbO 0.52, La₂O₃ 0.52, Ce₂O₃ 0.49, Nd₂O₃ 0.55, Bi₂O₃ 0.57, UO₂ 4.54, TiO₂ 0.18, SnO₂ 2.60, Nb₂O₅ 2.18, Ta₂O₅ 66.33, SiO₂ 0.46, Cs₂O 0.67, H₂O 4.84, total 98.35. The empirical formula, based on 2 cations at the B site, is $[\Box_{0.71}(H_2O)_{0.48}Ba_{0.33}Sr_{0.27}U_{0.10}Mn_{0.02}Nd_{0.02}Ce_{0.02}La_{0.02}Ca_{0.01}Bi_{0.01}Pb_{0.01}]_{\Sigma_{2.00}}$ $(Ta_{1.75}Nb_{0.10}Sn_{0.10}Si_{0.04}Ti_{0.01})_{\Sigma_{2.00}}[(O_{5.77}(OH)_{0.23}]_{\Sigma_{6.00}}[(H_2O)_{0.97}Cs_{0.03}]_{\Sigma_{1.00}}.$ The strongest eight X-ray powder-2.035(11)(511)(333), 1.869(29)(440), 1.788(10)(531), and 1.594(24)(622). The crystal structure refinement ($R_1 = 0.0363$) gave the following data: cubic, $Fd\overline{3}m$, a = 10.454(1) Å, V = 1142.5(2) Å³, Z = 8. The $Ta(O,OH)_6$ octahedra are linked through all vertices. The refinement results and the approximate empirical bond-valences sums for the positions A (1.0 v.u.) and Y' (0.5 v.u.), compared to valence calculations from electron microprobe analysis (EMPA) and ranges expected for H₂O molecules, confirm the presence of H₂O at the A(16d) site and displaced from the Y(8b) to the Y'(32e) position. The mineral is characterized by H_2O dominance at the Y site, vacancy dominance at the A site, and Ta dominance at the *B* site.

Keywords: Hydrokenomicrolite, new mineral, Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil, pyrochlore supergroup, microlite group, crystal structure