New structural features of the high-pressure synthetic sheet-disilicate Phase-X, $K_{(2-x)}Mg_2Si_2O_7H_x$

MARK D. WELCH,^{1,*} JÜRGEN KONZETT,² LUCA BINDI,³ SIMON C. KOHN,⁴ AND DANIEL J. FROST⁵

¹Department of Mineralogy, The Natural History Museum, Cromwell Road, London SW7 5BD, U.K.

²Institute of Mineralogy and Petrology, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria

³Dipartimento di Scienze della Terra, Università di Firenze, Via La Pira 4, I-50121 Firenze, Italy

⁴School of Earth Sciences, University of Bristol, Queens Road, Bristol BS8 1RJ, U.K.

⁵Bavarian Research Institute of Experimental Geochemistry and Geophysics, University of Bayreuth, D-95440 Bayreuth, Germany

ABSTRACT

The structure of the synthetic high-pressure sheet-disilicate Phase-X (PhX), a possible host of H₂O and K in the mantle, has been determined for a crystal synthesized at 16 GPa/1300 °C/23 h. The composition of the sample is close to $K_{15}Mg_2Si_2O_7H_{0.5}$, which is 50% PhX/50% Anhydrous-PhX and has 25% of interlayer K sites vacant. The structures of four crystals were determined by singlecrystal X-ray diffraction and had very similar diffraction characteristics and structural results; the structure of one of the larger crystals is reported here. Reflection intensity statistics strongly indicate that PhX is centrosymmetric, space group $P6_3/mcm$, in contrast to other studies that have reported non-centrosymmetric space group $P6_{3}cm$. While it was possible to obtain good agreement indices for refinements in $P6_3cm$, there were strong correlations between atoms that are equivalent in $P6_3/mcm$, suggesting that the correct structure is centrosymmetric. Full anisotropic refinement in space group $P6_3/mcm$ gave $R_1 = 0.036$, $wR_2 = 0.079$, GoF = 1.467. As with all previous studies of PhX, the H atom was not located. Difference-Fourier maps of the residual electron density indicated that the K atom is displaced from the 4c site lying on the sixfold axis on to three split 12*i* sites 0.2 Å away, each having ¹/₄ occupancy, giving a total of 3 K atoms per unit cell and corresponding to 1.5 K apfu, in good agreement with the content derived from electron microprobe analysis. Diffraction patterns of all four crystals examined, reconstructed from the full-intensity data collection, consistently show the presence of a large hexagonal superstructure with dimensions $8a_{sub} \times 8a_{sub} \times c_{sub}$, having Z = 128, compared with Z = 2 for the two-layer subcell. Complex arrays of superlattice reflections occur in layers with l = 2n, but are absent from l = 2n + 1 layers.

Unpolarized infrared spectra of single crystals of PhX were obtained that are similar to those reported previously in the literature. Spectra in the OH-stretching region consist of a major absorption band at 3595 cm⁻¹ and three much weaker bands at 3690, 3560, and 3405 cm⁻¹. Bond-valence analysis of PhX indicates that O1 is very over-bonded, whereas O2 is slightly under-bonded and a possible site for protonation. We present geometrical and crystal-chemical arguments that exclude O1 as a candidate for protonation, whereas a much better case can be made for O2. In PhX structures, H must be located at a partially occupied site with a multiplicity $4 \le m \le 24$ in $P6_3/mcm$ or $4 \le m \le 12$ in $P6_3cm$. Such low occupancies for H sites are the likely reason for their invisibility to diffraction. We outline a model for the incorporation of H into PhX of composition $K_{1.5}Mg_2Si_2O_7H_{0.5}$ that suggests a mechanism for ordering based upon avoidance of H and K, coupled with K-site vacancies. Such behavior may also be the origin of the superstructure. The $P6_3/mcm$ structure and the presence of an underlying superstructure may well be characteristic of ordered intermediate compositions at or near PhX₅₀/Anhydrous-PhX₅₀. Identification of a new space group and recognition of a previously unobserved superstructure point to new possibilities for PhX and its derivatives that may bear significantly upon their stability at mantle conditions.

Keywords: Phase-X, structure, X-ray diffraction, superlattice, infrared spectroscopy