X-ray absorption near edge structure (XANES) study of the speciation of uranium and thorium in Al-rich CaSiO₃ perovskite

STEEVE GRÉAUX,^{1,*} FRANÇOIS FARGES,^{1,†} LAURENT GAUTRON,¹ NICOLAS TRCERA,² ANNE-MARIE FLANK,^{2,3} AND PIERRE LAGARDE^{2,3}

 ¹Laboratoire des Géomatériaux et Géologie de l'Ingénieur, EA 4119, Université Paris-Est Marne la Vallée, 5 Bd Descartes, Champs s/ Marne, 77454 France
²SOLEIL Synchrotron, L'Orme des Merisier, BP 48, F-91192 Gif-sur-Yvette, France
³Paul Scherrer Institut, Swiss Light Source, Villigen-PSI, CH 5232, Switzerland

ABSTRACT

X-ray absorption spectroscopy was used to investigate the oxidation state of uranium in various Uand Th-bearing Al-rich CaSiO₃ perovskite samples synthesized at high-pressure and high-temperature using a multi-anvil press apparatus. X-ray absorption near edge spectroscopy (XANES) spectra collected at the U L_{III} - and Th L_{III} -edges using both micro- and macro-focused beams show U⁴⁺ in the Al-rich CaSiO₃ perovskite. The structure of the U- and Th-bearing Al-rich CaSiO₃ perovskite samples have been cross-checked by XANES spectra collected at the Ca K-, Al K-, and Si K-edges. Al K and Si K spectra suggest that Al incorporates exclusively on the Si site of the CaSiO₃ perovskite. Ca K spectra of the (U,Th)-bearing Al-rich CaSiO₃ perovskite samples were succesfully compared to FEFF8.2 ab initio models of a tetragonal CaSiO₃ perovskite with space group P4/mmm.

Our results confirm previous assumptions of the coupled substitution of CaSi₂ by UAl₂ in CaSiO₃ perovskite and that U and Th can be incorporated separately or together in CaSiO₃ perovskite by means of this mechanism. The possible occurrence of the U- and Th-bearing Al-rich CaSiO₃ perovskite are discussed as a potential candidate to locally host a large amount of actinides in the Earth's deep mantle. The study of a phase that can act as a storage mineral for heat-producing actinide elements such as uranium and thorium is fundamental to the understanding of the geodynamics and thermal behavior of Earth.

Keywords: Speciation, uranium, thorium, perovskite, X-ray absorption, deep mantle