American Mineralogist, Volume 97, pages 184–196, 2012

Implications of ferrous and ferric iron in antigorite

BERNARD W. EVANS,¹ M. DARBY DYAR,^{2,*} AND SCOTT M. KUEHNER¹

¹Department of Earth and Space Sciences, Box 351310, University of Washington, Seattle, Washington 98195-1310, U.S.A. ²Department of Astronomy, Mount Holyoke College, South Hadley, Massachusetts 01075-1423, U.S.A.

ABSTRACT

Microprobe analyses of antigorite show that (Al+Cr) and inferred Fe³⁺ correlate inversely with Si apfu in a Tschermaks substitution. This observation suggests that the uptake of Fe³⁺ is not simply related to f_{O_2} . For Si = 1.95 apfu estimated Fe³⁺ = 0.032 apfu (or 0.95 wt% Fe₂O₃). Such estimates of Fe³⁺ require high analytical accuracy and precision, and assume a fixed polysomatic formula (e.g., m = 17) and freedom from interlayer sheet-silicate impurities. In many cases the estimates appear to be high. An alternative measure of Fe³⁺ is provided by the partitioning of total Fe and Mg between antigorite and olivine in well-equilibrated natural antigorite-olivine-magnetite parageneses. Extrapolation of Nernst and Roozeboom partition plots to Fe-free olivine permits an estimate of the Fe³⁺ content of the average antigorite in this paragenesis, namely 0.42 or 0.64 wt% Fe₂O₃.

The partition estimates are in good agreement with the results of Mössbauer spectroscopy performed here on 14 antigorites from metaperidotites, together with four from the literature. These spectra reveal a range of 0.16 to 1.94 in wt% Fe₂O₃ in metaperidotite antigorite, with an average of 0.83. In two olivine-bearing rocks, antigorite has Fe³⁺/ Σ Fe ratios of 0.13 and 0.15, which corresponds to wt% Fe₂O₃ = 0.47 and 0.54, respectively. Larger amounts of Fe₂O₃ occur in some, but not all, vein antigorites. The prograde formation of antigorite in serpentinite from lizardite is accompanied by loss of some cronstedtite component and the precipitation of additional magnetite.

The Roozeboom Mg/Fe partition plot is concave down rather than up; in other words the partition coefficient K_D is a function of the X_{Mg} of olivine. This behavior has been found in other olivinemineral pairs. It can be interpreted to reflect strongly non-ideal solution behavior of MgFe-olivine at low temperatures, viz. $W_G \approx 8.5$ kJ assuming a symmetrical solution. MgFe-brucite appears to be similarly non-ideal.

Keywords: Antigorite, Mössbauer spectroscopy, microprobe, ferrous/ferric ratios, cronstedtite component, non-ideal olivine