Mejillonesite, a new acid sodium, magnesium phosphate mineral, from Mejillones, Antofagasta, Chile

DANIEL ATENCIO,^{1,*} NIKITA V. CHUKANOV,² FABRIZIO NESTOLA,³ THOMAS WITZKE,⁴ JOSÉ M.V. COUTINHO,⁵ ALEKSANDR E. ZADOV,⁶ REYNALDO R. CONTREIRA FILHO,⁷ AND GUNNAR FÄRBER⁸

¹Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508-080 São Paulo, SP, Brazil
²Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region 142432, Russia
³Dipartimento di Geoscienze, Università di Padova, Via Gradenigo 6, I-35131, Padova, Italy
⁴Institut für Geologische Wissenschaften, Mineralogie/Geochemie, Von Seckendorff Platz 3, D-06120 Halle, Germany
⁵Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508-080 São Paulo, SP, Brazil
⁶5NPP "Teplokhim", Dmitrovskoye av. 71, Moscow 127238, Russia
⁷Rua Murici 62, 13.098-315 Campinas, SP, Brazil
⁸Bornsche Strasse 9, 39326 Samswegen, Germany

ABSTRACT

Mejillonesite, ideally NaMg₂(PO₃OH)(PO₄)(OH) H₅O₂, is a new mineral approved by the CNMNC (IMA 2010-068). It occurs as isolated crystal aggregates in thin zones in fine-grained opal-zeolite aggregate on the north slope of Cerro Mejillones, Antofagasta, Chile. Closely associated minerals are bobierrite, opal, clinoptilolite-Na, clinoptilolite-K, and gypsum. Mejillonesite forms orthorhombic, prismatic, and elongated thick tabular crystals up to 6 mm long, usually intergrown in radiating aggregates. The dominant form is pinacoid $\{100\}$. Prisms $\{hk0\}, \{h0l\}, and \{0kl\}$ are also observed. The crystals are colorless, their streak is white, and the luster is vitreous. The mineral is transparent. It is non-fluorescent under ultraviolet light. Mohs' hardness is 4, tenacity is brittle. Cleavage is perfect on $\{100\}$, good on $\{010\}$ and $\{001\}$, and fracture is stepped. The measured density is 2.36(1) g/cm³; the calculated density is 2.367 g/cm³. Mejillonesite is biaxial (-), $\alpha = 1.507(2)$, $\beta = 1.531(2)$, $\gamma = 1.531(2)$, $2V(\text{meas}) = 15(10)^\circ$, $2V(\text{calc}) = 0^\circ$ (589 nm). Orientation is $X = \mathbf{a}$, Z = elongation direction. The mineral is non-pleochroic. Dispersion is r > v, medium. The IR spectrum contains characteristic bands of the Zundel cation ($H_5O_7^+$, or $H^+ 2H_2O$) and the groups P-OH and OH⁻. The chemical composition is (by EDS, H₂O by the Alimarin method, wt%): Na₂O 9.19, MgO 26.82, P₂O₅ 46.87, H₂O 19, total 101.88. The empirical formula, based on 11 oxygen atoms, is $Na_{0.93}Mg_{2.08}(PO_3OH)_{1.00}(PO_4)_{1.06}(OH)_{0.86} \cdot 0.95H_5O_2$. The strongest eight X-ray powder-diffraction lines [d in Å(I)(hkl)] are: 8.095(100)(200), 6.846(9) (210), 6.470(8)(111), 3.317(5)(302), 2.959(5)(132), 2.706(12)(113), 2.157(19)(333), and 2.153(9) (622). The crystal structure was solved on a single crystal (R = 0.055) and gave the following data: orthorhombic, *Pbca*, a = 16.295(1), b = 13.009(2), c = 8.434(1) Å, V = 1787.9(4) Å³, Z = 8. The crystal structure of mejillonesite is based on a sheet (parallel to the **b-c** plane) formed by two types of MgO_6 octahedra, isolated tetrahedra PO_4 and PO_3OH whose apical vertices have different orientation with respect to the sheet. The sheets are connected by interlayer, 5-coordinated sodium ions, proton hydration complexes, and hydroxyl groups. The structure of mejillonesite is related to that of angarfite, $NaFe_{5}^{3+}(PO_{4})_{4}(OH)_{4}\cdot 4H_{2}O$ and bakhchisaraitsevite, $Na_{2}Mg_{5}(PO_{4})_{4}\cdot 7H_{2}O$.

Keywords: Mejillonesite, new mineral, Chile, phosphate