Crystal chemistry of trioctahedral micas- $2M_1$ from Bunyaruguru kamafugite (southwest Uganda)

FERNANDO SCORDARI,* EMANUELA SCHINGARO, MARIA LACALAMITA, AND ERNESTO MESTO

Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari, via E. Orabona 4, I-70125 Bari, Italy

ABSTRACT

The crystal chemistry of $2M_1$ micas from Bunyaruguru kamafugite (southwest Uganda) was studied by electron probe microanalysis, single-crystal X-ray diffraction, Mössbauer and Fourier transform infrared spectroscopy. Chemical analyses showed that the studied crystals are Ti-rich, F-poor phlogopites with an annitic component, $Fe_{tot}/(Fe_{tot} + Mg)$, ranging from 0.15 to 0.22. Unit-cell parameters from single-crystal X-ray data are in the range: $5.3252(1) \le a \le 5.3307(1)$, $9.2231(3) \le b \le 9.2315(3)$, $20.1550(6) \le c \le 20.1964(8)$ Å, and $94.994(2) \le \beta \le 95.131(2)^{\circ}$.

Anisotropic structure refinements, in the space group C2/c, converged to $2.77 \le R_1 \le 3.52\%$ and $2.91 \le wR_2 \le 4.02\%$. Mössbauer spectroscopy showed that the studied sample has: $^{VI}Fe^{2+} = 60(1)\%$, $^{VI}Fe^{3+} = 24(1)\%$, and $^{IV}Fe^{3+} = 16(1)\%$. FTIR investigations pointed to the occurrence of Fe³⁺-oxy substitutions and ruled out the presence of vacancy mechanisms. The overall crystal-chemical features are consistent with the following substitutions: tetraferriphlogopite [$^{IV}Fe^{3+} \leftrightarrow ^{IV}AI$]; Ti-oxy [$^{VI}M^{2+} + 2$ (OH)⁻ $\leftrightarrow ^{VI}Ti^{4+} + 2$ (O²⁻) $+ H_2$] and Al, Fe³⁺, Cr-oxy [$^{VI}M^{2+} +$ (OH)⁻ $\leftrightarrow ^{VI}M^{3+} + O^{2-} + \frac{1}{2}(H_2)^{+}$]; Al, Fe³⁺-Tschermak [$^{VI}M^{2+} + ^{IV}Si^{4+} \leftrightarrow ^{VI}M^{3+} + ^{IV}AI$]; kinoshitalite [$^{XII}K + ^{IV}Si^{4+} \leftrightarrow ^{XII}Ba^{2+} + ^{IV}AI$] and [$^{XII}K^+ + ^{IV}AI^{3+} \leftrightarrow ^{IV}Si^{4+} + ^{XII}\square$].

The estimation of the OH⁻ content for Ugandan mica- $2M_1$ was obtained, for the first time, from the linear regression equation $c = 0.20(2) \times \text{OH}^-$ (gpfu) + 19.93(2) derived from literature data of $2M_1$ -samples with known OH⁻ content. The orientation of the O-H vector with respect to **c*** was found in the range from 2.0 to 6.9°.

Keywords: Kamafugitic $2M_1$ -phlogopites, crystal chemistry, substitution mechanisms, Mössbauer, FTIR