Compressibility and thermal expansion of hydrous ringwoodite with 2.5(3) wt% H₂O

YU YE,^{1,*} DAVID A. BROWN,² JOSEPH R. SMYTH,² WENDY R. PANERO,³ STEVEN D. JACOBSEN,⁴ YUN-YUAN CHANG,⁴ JOSHUA P. TOWNSEND,⁴ SYLVIA-MONIQUE THOMAS,^{4,}[†] ERIK H. HAURI,⁵ PRZEMYSLAW DERA,⁶ AND DANIEL J. FROST⁷

¹Department of Physics, University of Colorado at Boulder, Boulder, Colorado 80309, U.S.A.

²Department of Geological Sciences, University of Colorado at Boulder, Boulder, Colorado 80309, U.S.A.

³School of Earth Sciences, Ohio State University, Columbus, Ohio 43210, U.S.A.

⁴Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois 60208, U.S.A.

⁵Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, D.C. 20015, U.S.A.

⁶Center for Advanced Radiation Sources, University of Chicago, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.

⁷Bayerisches Geoinstitut, Universität Bayreuth, D95440 Bayreuth, Germany

ABSTRACT

Ringwoodite (γ -Mg₂SiO₄) is the stable polymorph of olivine in the transition zone between 525–660 km depth, and can incorporate weight percent amounts of H₂O as hydroxyl, with charge compensated mainly by Mg vacancies (Mg²⁺ = 2H⁺), but also possibly as (Si⁴⁺ = 4H⁺ and Mg²⁺ + 2H⁺ = Si⁴⁺). We synthesized pure Mg ringwoodite containing 2.5(3) wt% H₂O, measured by secondary ion mass spectrometry (SIMS), and determined its compressibility at 300 K by single-crystal and powder X-ray diffraction (XRD), as well as its thermal expansion behavior between 140 and 740 K at room pressure. A third-order Birch-Murnaghan equation of state (BM3 EOS) fits values of the isothermal bulk modulus $K_{T0} = 159(7)$ GPa and $(dK_T/dP)_{P=0} = K' = 6.7(7)$ for single-crystal XRD; $K_{T0} = 161(4)$ GPa and K' = 5.4(6) for powder XRD, with $K_{T0} = 160(2)$ GPa and K' = 6.2(3) for the combined data sets. At room pressure, hydrous ringwoodite breaks down by an irreversible unit-cell expansion above 586 K, which may be related to dehydration and changes in the disorder mechanisms. Single-crystal intensity data were collected at various temperatures up to 736 K, and show that the cell volume V(cell) has a mean thermal expansion coefficient α_{V0} of 40(4) ×10⁻⁶/K (143–736 K), and 29(2) ×10⁻⁶/K (143–586 K before irreversible expansion). V(Mg) have α_0 values of 41(3)×10⁻⁶/K (143–736 K), and V(Si) has α_0 values of 20(3)×10⁻⁶/K (143–586 K) and 132(4)×10⁻⁶K (586–736 K). Based on the experimental data and previous work from ²⁹Si NMR, we propose that during the irreversible expansion, a small amount of H⁺ cations in Mg sites transfer to Si sites without changing the cubic spinel structure of ringwoodite, and the substituted Si⁴⁺ cations move to the normally vacant octahedral site at $(\frac{1}{2}, \frac{1}{2})$ 0). Including new SIMS data on this and several Mg-ringwoodite samples from previous studies, we summarize volume-hydration data and show that the $Mg^{2+} = 2H^+$ dominates up to about 2 wt% H₂O, where a discontinuity in the volume vs. H₂O content trend suggests that other hydration mechanisms become important at very high H₂O contents.

Keywords: Compressibility, hydrous ringwoodite, irreversible thermal expansion