The heat capacity of fayalite at high temperatures

ARTUR BENISEK,^{1,*} HERBERT KROLL,² AND EDGAR DACHS¹

¹Materialforschung und Physik, Universität Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria ²Institut für Mineralogie, Westfälische Wilhelms Universität, Corrensstrasse 24, 48149 Münster, Germany

ABSTRACT

The high-temperature heat capacity of fayalite was reinvestigated using drop and differential scanning calorimetry. The resulting data together with drop calorimetry data taken from the literature were analyzed yielding C_P J/(mol·K) = -584.388 + 129440· T^{-1} - 3.84956·10⁷· T^{-2} + 4.10143·10⁹· T^{-3} + 98.4368·ln(*T*). This new C_P polynomial is recommended for calculating phase equilibria involving fayalite at mantle conditions. Using thermal expansion coefficient and isothermal bulk modulus data from the literature, the isochoric heat capacity was calculated resulting in C_V J/(mol·K) = -217.137 + 63.023.1· T^{-1} - 2.15863·10⁷· T^{-2} + 2.23513·10⁹· T^{-3} + 51.7620·ln(*T*).

Keywords: Specific heat, ferrous orthosilicate, high temperature, heat content