Phase stability and compression study of (Fe_{0.89},Ni_{0.11})₃S up to pressure of the Earth's core

TAKESHI SAKAI,^{*,1,2} EIJI OHTANI,² HIDENORI TERASAKI,² SEIJI KAMADA,² NAOHISA HIRAO,³ MASAAKI MIYAHARA,² AND MASAHIKO NISHIJIMA⁴

¹International Advanced Research and Education Organization, Tohoku University, Sendai 980-8578, Japan ²Department of Earth and Planetary Materials Science, Tohoku University, Sendai 980-8578, Japan ³Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan ⁴Institute for Material Research, Tohoku University, Sendai 980-8577, Japan

ABSTRACT

An in situ synchrotron powder X-ray diffraction study on $(Fe_{0.89}, Ni_{0.11})_3S$ was conducted up to 141 GPa and 1590 K. $(Fe_{0.89}, Ni_{0.11})_3S$ has a tetragonal structure, which is the same structure as Ni-free Fe₃S. Fitting a third-order Birch-Murnaghan equation of state to data at ambient temperature yielded a bulk modulus of $K_0 = 138.1(7.2)$ GPa and its pressure derivative $K'_0 = 4.5(3)$ with a zero pressure volume $V_0 = 375.67(4)$ Å³. The density of $(Fe_{0.89}, Ni_{0.11})_3S$ under the core-mantle boundary condition is 1.7% greater than that of Fe₃S. The axial ratio (c/a) of $(Fe_{0.89}, Ni_{0.11})_3S$ decreases with increasing pressure. The addition of nickel to Fe₃S leads to a softening of the *c*-axis. Assuming that the nickel content of the outer core is about 5 at%, we estimated 12.3–20.8 at% sulfur in the outer core for the given 6–10% density deficit between the outer core and pure iron at 136 GPa.

Keywords: Earth's core, core-mantle boundary, Fe-FeS system, phase relation, equation of state, laser-heated diamond-anvil cell