Effect of hydration on the single-crystal elasticity of Fe-bearing wadsleyite to 12 GPa

ZHU MAO,^{1,*} STEVEN D. JACOBSEN,² DANIEL J. FROST,³ CATHERINE A. MCCAMMON,³ ERIK H. HAURI,⁴ AND THOMAS S. DUFFY¹

¹Department of Geosciences, Princeton University, Princeton, New Jersey 08544, U.S.A. ²Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois 60208, U.S.A. ³Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany

⁴Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, D.C. 20015, U.S.A.

ABSTRACT

The single-crystal elastic properties of Fe-bearing wadsleyite with 1.93 wt% H₂O (Mg_{1.634}Fe_{0.202}H_{0.305}SiO₄) have been determined by Brillouin scattering. At ambient conditions, the aggregate bulk and shear moduli (K_{50} , G_0) of this wadsleyite are 156.2(5) and 98.0(3) GPa, respectively. Compared to the corresponding anhydrous wadsleyite, 1.93 wt% H₂O lowers K_{50} and G_0 by 8.1% and 9.3%, respectively. High-pressure measurements up to 12 GPa show that the pressure derivative of the bulk modulus, $K'_{50} = 4.8(1)$, is similar to that of the anhydrous Fe-wadsleyite with reported values of 4.6–4.74, but the addition of H₂O increases the pressure derivative of the shear modulus, G'_0 from 1.5(1) to 1.9(1). This contrasts with the G'_0 of Fe-free wadsleyite, which is the same within uncertainty for the hydrous and anhydrous phases. As a result, both the compressional- and shear-wave velocities (v_P , v_S) of hydrous Fe-bearing wadsleyite are about 200(±24) m/s slower than anhydrous Fe-bearing wadsleyite at transition zone pressures.

Keywords: Fe-bearing hydrous wadsleyite, elasticity, Brillouin scattering, transition zone, high pressure