High-pressure structural behavior of α-Fe₂O₃ studied by single-crystal X-ray diffraction and synchrotron radiation up to 25 GPa

PASCAL SCHOUWINK,^{1,*} LEONID DUBROVINSKY,² KONSTANTIN GLAZYRIN,² MARCO MERLINI,⁴ MICHAEL HANFLAND,³ THOMAS PIPPINGER,¹ AND RONALD MILETICH¹

¹Mineralphysik, Institut für Geowissenschaften, Universität Heidelberg, 69120 Heidelberg, Germany
²Bayerisches Geoinstitut, Universität Bayreuth, 95440 Bayreuth, Germany
³ESRF, Boîte Postale 220, 38043 Grenoble, France
⁴Dipartimento di Scienze della Terra, Università degli Studi di Milano, 20133 Milano, Italy

ABSTRACT

In situ X-ray diffraction experiments were carried out at pressures up to 25 GPa on a synthetic hematite (α -Fe₂O₃) crystal using synchrotron radiation in an angle-dispersive setup. Experiments were performed in diamond-anvil cells using neon as a pressure-transmitting medium. Single-crystal diffraction data were collected from omega scans and structural refinements were carried out for 10 pressure points. Bulk and linear incompressibilities were obtained from least-squares fits of refined data to the Eulerian strain based Birch-Murnaghan equation of state. Finite strain analysis suggests a truncation at second order, yielding results of $K_0 = 207(3)$, $K_{a0} = 751(17)$, and $K_{c0} = 492(8)$ for bulk and axial moduli, respectively. The *a*-axis is about 1.5 times stiffer than the *c*-axis. Compression of the main structural feature, the FeO₆ octahedra, is quite uniform, with just slight changes of distortion parameters at higher pressures.

Keywords: Compressibility, diamond-anvil cell, hematite, axial anisotropy, neon pressure medium