American Mineralogist, Volume 96, pages 888-894, 2011

Single-crystal Raman spectroscopy of natural schafarzikite FeSb₂O₄ from Pernek, Slovak Republic

SILMARILLY BAHFENNE, LLEW RINTOUL, AND RAY L. FROST*

Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia

ABSTRACT

We present the first single-crystal Raman spectra of the mineral schafarzikite FeSb₂O₄ from the Pernek locality of the Slovak Republic. In addition, Raman spectra of the natural mineral apuanite Fe²⁺Fe³⁺₄Sb₄O₁₂S, originating from the Apuan Alps in Italy, as well as spectra of synthetic ZnSb₂O₄ and the arsenite mineral trippkeite (CuAs₂O₄) are presented for the first time. The spectra of the antimonite minerals are characterized by a strong band in the region 660–680 cm⁻¹ with shoulders on either side, and a band of medium intensity near 300 cm⁻¹. The spectrum of the arsenite mineral is characterized by a medium band near 780 cm⁻¹ with a shoulder on the high wavenumber side and a strong band at 370 cm⁻¹. Mode assignments are proposed based on the spectral comparison between the compounds, symmetry modes of the bands and prior literature. The single-crystal spectra of schafarzikite showed good mode separation, allowing bands to be assigned to the symmetry species of A_{1g} , B_{1g} , B_{2g} , or E_g .

Keywords: Schafarzikite, trippkeite, apuanite, single-crystal Raman spectroscopy, antimonite