Crystal structure of Na₃Fe(SO₄)₃: A high-temperature product (~400 °C) of sideronatrite [Na₂Fe(SO₄)₂OH·3H₂O]

FERNANDO SCORDARI,^{1,*} GENNARO VENTRUTI,¹ ALESSANDRO F. GUALTIERI,² AND ANDREA LAUSI³

¹Dipartimento Geomineralogico, Università degli Studi di Bari, Via E. Orabona 4, I-70125 Bari, Italy ²Dipartimento di Scienze della Terra, Università degli Studi di Modena e Reggio Emilia, L.go S.Eufemia 19, I-41100 Modena, Italy ³Sincrotrone Trieste, Strada Statale 14, km 163.5, I-34012 Basovizza (TS), Italy

ABSTRACT

The iron sulfate Na₃Fe(SO₄)₃ studied here has been obtained as a high-temperature (HT) product (~400 °C) from the thermal decomposition of sideronatrite from Sierra Gorda (Chile) having composition Na₂Fe(SO₄)₂(OH)·3H₂O. The structure determination was carried out using synchrotron X-ray powder diffraction. Structural data refined by the Rietveld method, up to $R_p = 11.95\%$, are: space group $R\overline{3}$, lattice parameters a = b = 13.6231(1) Å and c = 9.0698(1) Å, V = 1457.76(2) Å³, and Z = 6. The structure of Na₃Fe(SO₄)₃ can be described in terms of FeO₆ octahedra connected to sulfate tetrahedra by corner-sharing to form infinite chains [Fe(SO₄)₃]_∞, running along **c**. These chains are joined together by Na atoms to build up a three-dimensional network of strong (Fe-O-S) and weak (Na-O) bonds. The topological relationships of Na₃Fe(SO₄)₃ to the structure of some analog minerals are also discussed.

Keywords: Iron sulfate, synchrotron, structure solution, Rietveld refinement