The structure of braitschite, a calcium rare earth borate

CLARE E. ROWLAND,¹ CHRISTOPHER L. CAHILL,¹ AND JEFFREY E. POST^{2,*}

¹Department of Chemistry, The George Washington University, Washington, D.C. 20052, U.S.A. ²Department of Mineral Sciences, Smithsonian Institution, Washington, D.C. 20560-0119, U.S.A.

ABSTRACT

The crystal structure of braitschite, $Ca_{6.15}Na_{0.85}RE_{2.08}[B_6O_7(OH)_3(O,OH)_3]_4(H_2O)$, is reported here in space group *P6/m* with unit-cell parameters *a* = 12.1506(6), *c* = 7.3678(4) Å, and *V* = 942.03(8) Å³. Data were collected from a single crystal using a MoK α source and a CCD detector, solved by direct methods, and refined to an *R* factor of 2.81%. The mineral structure consists of hexaborate fundamental building blocks that polymerize along [001] and are bound by Ca²⁺ and REE³⁺ counterions. The framework forms hexagonal channels, which are occupied alternately by Ca²⁺ cations and water molecules. In an investigation of its thermal stability, braitschite maintains its crystallinity to a temperature of 400 °C, after which it undergoes decomposition. Using Rietveld refinements against powder X-ray diffraction data, we were able to track the loss of water molecules in channels and hydroxyl groups in the covalent B-O network with increasing temperature.

Keywords: Braitschite, borate, rare earth mineral, crystal structure