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Equation of state of carbonated hydroxylapatite at ambient temperature up to 10 GPa: 
Significance of carbonate
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abStRact

The incorporation of the carbonate ion into the crystal structure of hydroxylapatite results in the 
creation of vacancies, oxygen-loss, and disorder, with consequent changes in physical and chemi-
cal properties. High-pressure experimental investigation up to 10 GPa of two synthetic carbonated 
hydroxylapatite samples with up to 11 wt% CO3, using a diamond-anvil cell and synchrotron powder 
X-ray diffraction, provides the first rigorous assessment of the mechanical behavior of the carbon-
ated hydroxylapatite. The pressure-volume data suggest that the isothermal bulk modulus of these 
carbonated hydroxylapatites has been significantly decreased by the presence of the carbonate (up 
to about 15%), which in turn will affect all the carbonated apatite-related reactions in the geosystem. 
Since hydroxylapatite is one of the major components of the bones and teeth, the incorporation of the 
carbonate in the hydroxylapatite weakens teeth and bones not only chemically, but also physically.
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intRoduction

Apatite commonly occurs in sedimentary, igneous, and 
metamorphic rocks (e.g., Walters and Luth 1969; McClellan 
1980; Lang et al. 1995; Santos and Clayton 1995; Comodi and 
Liu 2000), and it has been regarded as the tenth most abundant 
mineral on the Earth (McClellan and Lehr 1969; Hughes and 
Rakovan 2002). In most geological settings, it is present as 
an accessory phase, but in some other cases it can appear as a 
major phase; for example, its proportion in the pyroxenite of the 
Triassic-Jurassic silica-undersaturated alkalic intrusions in the 
Cordillera of British Columiba is about 10% (Lang et al. 1995). 
Due to its ubiquitous geological presence and crystal-structure 
chemical characteristics, such as extensive anion/cation substitu-
tion and volatile content (Hughes and Rakovan 2002; Pan and 
Fleet 2002), apatite has numerous useful geological applications, 
especially in dating and petrogenesis (e.g., Li et al. 2000; Filiberto 
and Treiman 2009).

The general chemical formula of apatite can be written as 
A10(BO4)6X2, where A = Na+, Ag+, Ca2+, Pb2+, and rare-earth 
elements (REE3+), B = P5+, C3+, S6+, Si4+, As5+, and V5+, and X 
= F–, (OH)–, Cl–, (CO3)2–, (HCO3)–, O2–, neutral molecules like 
H2O, and vacancies (Pan and Fleet 2002; Fleet and Liu 2007a). 
The geologically important species of apatite are fluorapatite 
[ideal formula Ca10(PO4)6F2], hydroxylapatite [ideal formula 
Ca10(PO4)6(OH)2], chlorapatite [ideal formula Ca10(PO4)6Cl2], and 
carbonated apatite with variable formula. The structural details 
of fluorapatite, hydroxylapatite, and chlorapatite have been 
generally well established (e.g., Hughes et al. 1989) while those 
of carbonated apatite have not been fully disclosed, as outlined 
below. It has been experimentally shown that apatite can be 

stable up to the P-T conditions of the upper mantle of the Earth 
[about 12 GPa; Murayama et al. (1986)], so that the equation 
of state of apatite could be very important. So far, compression 
experiments have been carried out to investigate the compress-
ibility of fluorapatite, hydroxylapatite, and chlorapatite (Brunet 
et al. 1999; Comodi et al. 2001; Matsukage et al. 2004), but no 
comparable work has been done on the carbonated apatite. Ad-
ditional closely-related experimental studies include Liu et al. 
(2008) [lead fluorapatite Pb10(PO4)6F2] and Fleet et al. (2010) 
(lead fluorapatite), and Zhai et al. (2009) [γ-tricalcium phosphate 
γ-Ca3(PO4)2, the main breakdown product of apatite].

As mentioned above, the formula of carbonated apatite is 
highly variable, and this is mainly because carbonate can substi-
tute for both the channel anion and the phosphate ion: the former 
carbonate is referred to as type A while the latter is type B (e.g., 
LeGeros 1965; Trueman 1966; LeGeros et al. 1969; Elliott et al. 
1980; Regnier et al. 1994; Nathan 1996). Due to the importance 
of the carbonated hydroxylapatite in biomineralization (Elliott 
1994, 2002), the incorporation of carbonate in apatite and its 
resulting physical-chemical changes have been actively explored 
and intensely debated (e.g., Wilson et al. 1999; Leventouri et 
al. 2000, 2001; Fleet and Liu 2003, 2004, 2005, 2007b, 2008a, 
2008b, 2009; Fleet et al. 2004; Wilson et al. 2004; Fleet 2009). In 
particular, it has been shown that the incorporation of carbonate 
into the structure of apatite can enhance the solubility of apatite 
(LeGeros 1991). Here we investigate the effect of the carbonate 
ion on the compressibility of the apatite.

eXpeRiMentaL MethodS
The materials used in the high-pressure experiments reported here were 

samples LM006 {[Ca9.66Na0.35][(PO4)5.56(CO3)0.44][(OH)1.45(CO3)0.33]; 4.8 wt% CO3} 
and LM005 {[Ca9.13Na0.87][(PO4)5.05(CO3)0.95][(OH)0.36(CO3)0.86]; 11.2 wt% CO3} 
(Fleet and Liu 2007b). These two samples have been characterized previously by * E-mail: xi.liu@pku.edu.cn


