American Mineralogist, Volume 96, pages 553-557, 2011

Density of carbonated peridotite magma at high pressure using an X-ray absorption method

TATSUYA SAKAMAKI,^{1,*} EIJI OHTANI,¹ SATORU URAKAWA,² HIDENORI TERASAKI,¹ AND YOSHINORI KATAYAMA³

¹Department of Earth and Planetary Materials Science, Tohoku University, Sendai 980-8578, Japan ²Department of Earth Sciences, Okayama University, Okayama 700-8530, Japan ³Japan Atomic Energy Agency, Hyogo 679-5143, Japan

ABSTRACT

The density of carbonated peridotite magma was measured up to 3.8 GPa and 2100 K using an X-ray absorption method. A fit of the pressure-density-temperature data to the high-temperature Birch-Murnaghan equation of state yielded the isothermal bulk modulus, $K_{T0} = 22.9 \pm 1.4$ GPa, its pressure derivative, $K'_0 = 7.4 \pm 1.4$, and the temperature derivative of the bulk modulus $(\partial K_T / \partial T)_P = -0.006 \pm 0.002$ GPa/K at 1800 K. The bulk modulus of carbonated peridotite magma is larger than that of hydrous peridotite magma. The partial molar volume of CO₂ in magma under high pressure and temperature conditions was calculated and fit using the Vinet equation of state. The isothermal bulk modulus was $K_{T0} = 8.1 \pm 1.7$ GPa, and its pressure derivative was $K'_0 = 7.2 \pm 2.0$ at 2000 K. Our results show that the partial molar volume of CO₂ is less compressible than that of H₂O, suggesting that, on an equal molar basis, CO₂ is more effective than H₂O in reducing peridotite melt density at high pressure.

Keywords: X-ray absorption method, carbonated peridotite magma, density, high pressure, equation of state, partial molar volume of CO_2