Neutron diffraction study of hydrogen in birnessite structures

JEFFREY E. POST,^{1,*} PETER J. HEANEY,² AND YUNCHUL CHO³

¹Department of Mineral Sciences, Smithsonian Institution, P.O. Box 37012, Washington, D.C. 20013-7012, U.S.A. ²Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A. ³Department of Crop and Soil Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.

ABSTRACT

The positions of hydrogen (deuterium) cations within the interlayer of synthetic Na- and K-birnessite samples have been determined for the first time using Rietveld analysis and Fourier difference syntheses, from time-of-flight powder neutron diffraction data. This study revealed that two symmetry-related D(H) positions are located ~1 Å above and below the midpoint between the split O interlayer sites in Na-birnessite. This result confirms our earlier interpretation that the split interlayer sites include O atoms from two symmetrically equivalent H₂O molecules. These molecules are oriented 180° to each other, and they are pivoted about a single set of H(D) atoms positions. The interlayer H₂O molecules in K-birnessite are oriented such that one of the H(D) atoms is pointed approximately toward the Mn octahedral layer O atoms and the other is directed approximately within the net of interlayer K/O sites. In K-birnessite, six K-O_{oct} distances are shorter than 3.35 Å, compared with only two Na-O_{oct} bond lengths in Na-birnessite, suggesting that K cations are more tightly bonded to the octahedral O atoms than are Na cations.

Keywords: Birnessite, Rietveld, neutron, hydrogen