Far-infrared spectra of synthetic ^[4][(Al_{2-x}Ga_x)(Si_{2-y}Ge_y)](OH,OD,F)₂-kinoshitalite: Characterization and assignment of interlayer Ba-O_{inner} and Ba-O_{outer} stretching bands

KIYOTAKA ISHIDA^{1,*} AND FRANK C. HAWTHORNE²

¹Department of Environmental Changes, Graduate School of Social and Cultural Studies, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

²Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

ABSTRACT

Far-infrared spectroscopy and X-ray diffraction Rietveld structure-refinement of synthetic kinoshitalite (Kn) solid solutions, $BaMg_3[(Al_{2-x}Ga_x)(Si_{2-y}Ge_y)]O_{10}(OH,OD,F)_2$: (x = 0.0–2.0, y = 0.0–2.0), show that there is complete solid solution for all compositions in each (OH/OD)- and F-series: [4][Al₂(Si_{2-y}Ge_y)]-, [4][(Al_{2-x}Ga_x)Si₂]-, [4][Ga₂(Si_{2-y}Ge_y)]-, [4][(Al_{2-x}Ga_x)Ge₂]-Kn, and in OH/OD-for-F substituted ${}^{[4]}(Al_2Si_2)$ -, ${}^{[4]}(Ga_2Si_2)$ -, ${}^{[4]}(Al_2Ge_2)$ -, ${}^{[4]}(Ga_2Ge_2)$ -Kn end-member compositions. In the far-infrared region, 170-40 cm⁻¹, three kind of bands are observed; an in-plane tetrahedral torsional mode, an interlayer Ba-O_{inner} stretching vibration and a Ba-O_{outer} stretching vibration. With increasing tetrahedral ^[4]Al-for-^[4]Ga and Si-for-Ge substitution, the frequencies and intensities of the tetrahedral in-plane torsional bands decrease in both the (OH/OD)- and F-bearing phases, but in the [4](Al₂Si₂)-, ^[4](Ga₂Si₂)-, ^[4](Al₂Ge₂)-, ^[4](Ga₂Ge₂)-Kn end-member compositions, the frequencies are unaffected by (OH/OD)-for-F substitution. The frequencies of both the Ba-O_{inner} and Ba-O_{outer} stretching bands increase with increasing [4]Al-for-[4]Ga and Si-for-Ge substitution, but the frequencies of the Ba-O_{inner} stretching bands decrease with increasing (OH/OD)-for-F substitution in the ^[4](Al₂Si₂)-, ^[4](Ga₂Si₂)-, ^[4](Al₂Ge₂)-, ^[4](Ga₂Ge₂)-Kn end-member compositions. The frequency difference between the Ba-O_{inner} and Ba-O_{outer} stretching bands is linearly related to the tetrahedral rotation angles (α), and these differences are about 10 cm⁻¹ larger in the (OH/OD)-bearing phases than in the corresponding F-bearing phases. The ranges of absorption frequencies and their corresponding deformation modes are as follows: (1) inplane tetrahedral torsional mode, 105-150 cm⁻¹; (2) Ba-O_{inner} stretching vibration, 105-140 cm⁻¹; and (3) Ba- O_{outer} stretching vibration, 75–90 cm⁻¹.

Keywords: Far-infrared spectra, synthetic kinoshitalite, in-plane torsional mode, Ba-O_{inner} stretching band, Ba-O_{outer} stretching band