A first record of strong structural relaxation of TO₄ tetrahedra in a spinel solid solution

ULF HÅLENIUS,^{1,*} FERDINANDO BOSI,² AND HENRIK SKOGBY¹

¹Department of Mineralogy, Swedish Museum of Natural History, Box 50007, SE-10405 Stockholm, Sweden ²Dipartimento di Scienze della Terra, Sapienza Università di Roma, P.le Aldo Moro, 5, I-00185 Rome, Italy

ABSTRACT

Optical absorption spectroscopy and X-ray structural refinements of seven different spinel single crystals on the $(Mg_{1-x}Mn_x)Al_2O_4$ solid solution (x = 0.02–1.00) evidences exceptionally strong relaxation (ε = 0.83) of ^{IV}Mn²⁺-O bonds. Our single-crystal structure refinements demonstrate that the ideal ^{IV}Mn²⁺-O bond distance in fully ordered galaxite (MnAl₂O₄) should be 2.050 Å, which is 0.014 Å longer than previously suggested, and that structural parameters are mainly affected by the variations occurring at the TO₄ tetrahedron. The very strong structural relaxation observed around the T site may be explained by the fact that the TO₄ polyhedra of the spinel structure share only corners with neighboring MO₆ octahedra and are fully isolated from neighboring TO₄ tetrahedra. This provides structural flexibility around the T site and allows for considerable local T-O bond distance variations.

Keywords: Spinel, galaxite, electronic spectra, structure refinement, microprobe analysis, synthesis