Paramagnetic interactions in the ³¹P NMR spectroscopy of rare earth element orthophosphate (REPO₄, monazite/xenotime) solid solutions

AARON C. PALKE* AND JONATHAN F. STEBBINS

Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115, U.S.A.

ABSTRACT

We present the results of a variable-temperature (VT) ³¹P magic angle spinning NMR (MAS-NMR) study of a series of solid solutions between different synthetic rare earth (RE = Y, La, Ce, Pr, Nd, Eu, Dy) orthophosphates (REPO₄) taking either the monoclinic monazite or tetragonal xenotime (zircon) crystal structure. Solid solutions were formed by mixing a small amount of a paramagnetic REPO₄ material (RE = Ce, Pr, Nd, Eu, Dy) with either diamagnetic LaPO₄ or YPO₄, which take the monoclinic and tetragonal crystal structures, respectively. Mixtures were made with up to 10 mol% (nominal content) of the paramagnetic component. ³¹P spectra of these materials contained several paramagnetically shifted resonances indicating some dissolution of the paramagnetic rare earth into the host LaPO₄ or YPO₄ phase; however, it is clear that none of the samples studied here reached a state of complete solid solution. The use of multiple paramagnetic species in dilute solid solution with two diamagnetic materials taking different crystal structures enabled an investigation of the probable mechanisms of paramagnetic interactions in the ³¹P NMR experiments. A peak assignment model is introduced for the ³¹P spectra. Our analysis indicates that the paramagnetic interactions are dominated by the Fermi contact shift with a secondary contribution from the so-called "pseudocontact" shift.

Keywords: NMR spectroscopy, monazite, xenotime, paramagnetic shifts, phosphates