An experimental study of the diffusion of C and O in calcite in mixed CO₂-H₂O fluid

T.C. LABOTKA,^{1,*} D.R. COLE,^{2,†} M.J. FAYEK,³ AND T. CHACKO⁴

¹Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee 37996-1410, U.S.A.

²Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110, U.S.A.

³Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

⁴Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada

ABSTRACT

The diffusivity of C and O in calcite in mixed CO₂-H₂O fluid was determined over the range in x_{CO2} from 1.0 to about 0.2 at 700 °C, 100 MPa, with selected experiments conducted at pressures to 250 MPa and temperatures of 600 and 800 °C. The diffusivity of C, $D_{\rm C}$, varies little with $x_{\rm CO2}$, although there is some evidence for a slight increase in $D_{\rm C}$ from ~5 × 10⁻¹⁸ to ~5 × 10⁻¹⁷ cm²/s with decreasing x_{CO_2} . Our data and those of others are consistent with a model for $D_C \propto 1/f_{CO_2}$. Despite the large uncertainty, we observed that the diffusivity of O, D_0 , increases from $\sim 2 \times 10^{-16}$ to $\sim 5 \times 10^{-14}$ cm²/s with x_{CO2} decreasing from 1.0 to 0. There is a good correlation at 700 °C between log D_0 and log f_{H20} regardless of the total pressure, matching the observations of previous workers. The data are consistent with a simple two-component model for the diffusion of O in calcite, one component for diffusion in the presence of CO₂ and one in the presence of H₂O: $D_0 = D_0^{CO_2} + D_{D^{2O}}^{H_2O} a_{H_2O}$. The activity of H₂O is relative to the fugacity at 100 MPa, 700 °C. $D_0^{CO_2}$ is 3.45×10^{-16} , and $D_0^{H_{2O}}$ is 3.8×10^{-14} cm²/s. The data indicate that the rate of diffusion of C and O in calcite is controlled by reactions at the surface of calcite. Adsorption of H₂O and the creation of vacancies at the surface account for the dependence of the diffusivity on the fugacity of the fluid components. There is little evidence that H itself diffuses into calcite. With this model and the values of D_0 in pure CO₂ (Labotka et al. 2000) and in pure H₂O (Farver 1994), the value of D_0 is predicted over the temperature range 600–800 °C and $p_{\rm H20}$ up to 300 MPa, the range of the data. Calculated closure temperatures for diffusive exchange of O between calcite and fluid are reduced by about 150 °C in the presence of an aqueous fluid.

Keywords: O isotope, C isotope, calcite, diffusion, experiment