American Mineralogist, Volume 96, pages 1238-1247, 2011

Radiation effects on cathodoluminescence of albite

MASAHIRO KAYAMA,^{1,*} HIROTSUGU NISHIDO,¹ SHIN TOYODA,² KOSEI KOMURO,³ AND KIYOTAKA NINAGAWA²

¹Research Institute of Natural Sciences, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan ²Department of Applied Physics, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan ³Earth Evolution Sciences, University of Tsukuba, Ten-nodai, Ibaraki 305-8571, Japan

ABSTRACT

He⁺ ion implantation on albite (Minas Gerais, Brazil) at 4.0 MeV, corresponding to the energy of α particle from ²³⁸U fission, has been conducted to clarify the radiation effects of α particles from radioactive minerals on cathodoluminescence (CL) of albite. CL of albite results in various emission bands at ~380, ~560, and ~740 nm, and in the UV range. Red emission at 700-750 nm is detected in the CL spectra of the implanted samples. Total CL intensities of these UV, blue, yellow, red, and IR emissions vary among the samples. High-resolution CL imaging of the cross-section samples shows a CL halo on the implanted surface of approximately 14 µm thickness, which is consistent with a theoretical range of α particles of 4.0 MeV. It was first confirmed experimentally that the CL halo is created by α particles. The deconvolution of CL spectra in the red emission range by Gaussian fitting provides the component at 1.861 eV that is attributed to a radiation-induced defect center produced by He⁺ ion implantation. The intensity of the component at 1.861 eV linearly correlates with the dose density of He⁺ implantation on albite as a function of the population of the radiation-induced defect center, regardless of other factors such as concentration and distribution of other emission centers, existence of microstructures and textures, and crystallographic orientation. The CL spectral deconvolution has a high potential for quantitative evaluation of the radiation dose of α particles from natural radionuclides on albite for a geodosimetry.

Keywords: Cathodoluminescence, albite, radiation-induced defect center, He⁺ ion implantation, cathodoluminescence halo, cathodoluminescence spectral deconvolution