OH species, U ions, and CO/CO₂ in thermally annealed metamict zircon (ZrSiO₄)

MING ZHANG,^{1,*} EKHARD K.H. SALJE,¹ AND RODNEY C. EWING²

¹Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, U.K. ²Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109-1005, U.S.A.

ABSTRACT

Metamict zircon crystals have been thermally annealed between 500 and 1800 K and analyzed using infrared and optical spectroscopy in the spectral region of 1400–7000 cm⁻¹. Recrystallization and dehydroxylation via complex proton/OH diffusion, redistribution, and incorporations of additional hydrogen-related species within the crystal structure of zircon occur at temperatures above 700 K in partially metamict zircon and above 1200 K in heavily amorphized material. Thermally induced changes in O-H stretching spectra are different between $E \parallel c$ and $E \perp c$ in weakly metamict zircon. The O-H stretching band near 3342 cm⁻¹ (with $E \perp c$) in an untreated sample shifts to 3277 cm⁻¹ at 1200 K, where the frequency of O-H stretching bands with $E \parallel c$ increases. Conversions of hydrogen-related species were observed and extra OH bands were found at temperatures between 1200 and 1600 K. A dramatic change of OH spectra was recorded between 1600 and 1800 K in partially metamict crystals, resulting in additional absorption features (near 3098 and 2998 cm⁻¹ along $E \perp c$). U⁴⁺ and U⁵⁺ related spectra are also affected by high-temperature annealing. For highly metamict zircon, the U⁴⁺ band near 4830 cm⁻¹ shows an increase in intensity above 1200 K. Additional IR bands at 2146 and 2344 cm⁻¹ appear in the spectra of metamict zircon annealed at high temperatures. Their frequencies are consistent with stretching vibrations of CO and CO₂.

Keywords: Infrared spectroscopy, zircon, high temperature, hydroxyl species, metamictization, uranium, CO, CO₂, dehydroxylation and recrystallization