A relationship between d_{104} value and composition in the calcite-disordered dolomite solid-solution series

FANGFU ZHANG, HUIFANG XU,* HIROMI KONISHI, AND ERIC E. RODEN

NASA Astrobiology Institute, Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin 53706, U.S.A.

ABSTRACT

X-ray diffraction has been widely used in analyzing Ca-Mg carbonates. Compositions of biogenic and inorganic (Ca,Mg)CO₃ crystals are often calculated by comparing their d_{104} values with published empirical curves. However, previous studies suggested that these curves do not apply to very high-Mg calcite and disordered dolomite. Based on synthesized high-Mg calcite and disordered dolomite, a new empirical curve between values of magnesian calcite d_{104} and MgCO₃ content in the calcite-disordered dolomite solid-solution series is constructed. This new curve is consistent with the significant cell parameter changes accompanying the Mg-Ca cation disorder in dolomite, and it can help the characterization of the MgCO₃ content of both natural and synthetic magnesian calcite and disordered dolomite, especially for the mineral mixtures that are not suitable for other analysis methods.

Keywords: High-magnesian calcite, d_{104} , calcite, disordered dolomite, solid solution, Mg-Ca ordering in dolomite