Crystal chemistry of synthetic lawsonite solid-solution series CaAl₂[(OH)₂/Si₂O₇]·H₂O-SrAl₂[(OH)₂/Si₂O₇]·H₂O and the *Cmcm*-*P*2₁/*m* phase transition

A. LIEBSCHER,^{1,2,*} G. DÖRSAM,² G. FRANZ,² B. WUNDER,³ AND M. GOTTSCHALK³

¹Centre for CO₂ Storage, German Research Centre for Geosciences GFZ Potsdam, Telegrafenberg, D-14473 Potsdam, Germany
²Fachgebiet Mineralogie und Petrologie, Technische Universität Berlin, Ackerstrasse 76, D-13355 Berlin, Germany
³Section 3.3, Chemistry and Physics of Earth Materials, German Research Centre for Geosciences GFZ Potsdam, Telegrafenberg, D-14473
Potsdam, Germany

ABSTRACT

Crystals of the solid-solution series of (Ca,Sr)-lawsonite were synthesized hydrothermally at 4 GPa and 600 and 800 °C in piston-cylinder experiments. Synthesis products were analyzed with SEM, EMP, and powder-XRD. Lawsonite was observed in both the orthorhombic space group *Cmcm* and in the monoclinic space group $P2_1/m$. It is exclusively orthorhombic at low x_{sr}^{bulk} but monoclinic at high x_{St}^{bulk} ; in the range $x_{St}^{\text{bulk}} = 0.18$ to 0.4 both polymorphs coexist and the data suggest a two-phase field between $x_{sensor}^{otho} \sim 0.1-0.2$ and $x_{sensor}^{onno} \sim 0.3-0.4$ at 4 GPa/600 °C. Linear regression to the refined lattice parameters yields $a = 0.017 \cdot x_{sr} + 5.841$ (Å), $b = 0.197 \cdot x_{sr} + 8.787$ (Å), $c = 0.263 \cdot x_{sr} + 13.130$ (Å), and $v = 4.62 \cdot x_{sr} + 101.46$ (cm³/mol) for orthorhombic lawsonite and $a = 0.119 \cdot x_{sr} + 5.306$ (Å), $b = 0.118 \cdot x_{sr}$ + 13.160 (Å), $c = 0.025 \cdot x_{sr} + 5.833$ (Å), $\beta = 0.38 \cdot x_{sr} + 124.07$ (°), and $v = 3.20 \cdot x_{sr} + 101.59$ (cm³/mol) for monoclinic lawsonite. The data suggest an increasingly negative $\Delta v_{\text{ortho-mono}}$ with increasing x_{Sr} . In monoclinic lawsonite, structural expansion due to the incorporation of Sr is primarily accomplished by tilting and rotation within the Si_2O_7 -group, whereas in orthorhombic lawsonite this tilting and rotation is prohibited by symmetry restrictions and expansion is mostly accomplished by an increase in lattice parameters. Combining the extrapolated Ca end-member volume for monoclinic lawsonite with published high-P data yields $K_0^{\text{mono}} = 137(3)$ GPa (K' = 4.4). Contrary to the Ca end-member system, the $Cmcm-P2_1/m$ phase transition is quenchable within the Sr-bearing system. A tentative phase diagram for (Ca,Sr)-lawsonite at 600 °C indicates a narrow orthorhombic-monoclinic two-phase field that shifts significantly to lower pressure with increasing x_{sr} . The Cmcm–P2₁/m phase transition in the Sr end-member system is located at ≤ 1 GPa at ~400 to 600 °C, 6 to 9 GPa below the transition in the Ca-system, and has a negative P-T slope.

Keywords: Crystal structure, lawsonite, XRD data, experimental petrology