Free energy of formation of zircon based on solubility measurements at high temperature and pressure

ROBERT C. NEWTON,¹ CRAIG E. MANNING,^{1,*} JOHN M. HANCHAR,² AND CLINTON V. COLASANTI¹

¹Department of Earth and Space Sciences, University of California at Los Angeles, Los Angeles, California 90095, U.S.A. ²Department of Earth Sciences, Memorial University, St. Johns, Newfoundland A1B 3X5, Canada

ABSTRACT

The standard Gibbs energy of formation of zircon was constrained by measuring the solubility of silica in H_2O in equilibrium with zircon and baddeleyite at 800 °C, 12 kbar, by a sensitive weight-change method. Dissolution occurs incongruently according to the reaction:

 $ZrSiO_4 = ZrO_2 + SiO_{2(t)}$ zircon baddelevite

where SiO_{2(i)} is total dissolved silica. Blank runs demonstrated that the effects of ZrO₂ solubility and/or capsule-Pt transfer were near the weighing detection limit, so weight losses or gains could be ascribed quantitatively to SiO₂ solubility. Precise SiO_{2(i)} concentrations were ensured by use of three types of starting material, by approaching equilibrium from zircon-undersaturation and oversaturation, and by demonstrating time-independence of the measurements. The results yielded a SiO₂ concentration of 0.069 ± 0.002 (1 se) moles per kg H₂O (*m_s*), or a mole fraction (*X_s*) of $1.23 \times 10^{-3} \pm 3.3 \times 10^{-5}$. Two runs on zircon solubility in NaCl-H₂O solutions at 800 °C and 10 kbar showed silica solubility to decrease by nearly 1% per mol% NaCl.

The standard molar Gibbs free energy of formation of zircon from the oxides at a constant *P* and *T* is given by:

$$\Delta G_{f,ox,zr}^{\circ} = RT \ln \frac{\gamma_s^{ZB} X_s^{ZB}}{\gamma_s^{Q} X_s^{Q}}$$

where *ZB* and *Q* refer, respectively, to equilibrium with zircon-baddeleyite and quartz, γ_s is the activity coefficient of total silica, and the relationship between γ_s and X_s accounts for aqueous silica activity. Our results yield $\Delta G_{J,\alpha,z,r}^o = -18.5 \pm 0.7$ kJ/mol at 800 °C, 12 kbar (95% confidence), or a standard apparent Gibbs free energy of formation from the elements of -1918.3 ± 0.7 kJ/mol at 25 °C, 1 bar. Our value is consistent with determinations based on phase equilibrium studies, within reported error limits, but is more precise than most previous values. However, it is less negative than high-temperature determinations by calorimetry and electrochemistry. Our results indicate that solubility measurements at high *T* and *P* may be a superior method of free energy determination of other refractory silicate minerals.

Keywords: Experimental petrology, phase equilibria, thermodynamics, zircon