American Mineralogist, Volume 95, pages 200-203, 2010

LETTER Fe³⁺ spin transition in CaFe₂O₄ at high pressure

MARCO MERLINI,^{1,2,*} MICHAEL HANFLAND,¹ MAURO GEMMI,² SIMO HUOTARI,¹ LAURA SIMONELLI,¹ AND PIERRE STROBEL³

¹ESRF—European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP220, 38043 Grenoble CEDEX, France ²Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, 20133 Milano, Italy ³Institut Néel, CNRS and Université Joseph Fourier, BP166, 38042 Grenoble Cedex 9, France

ABSTRACT

Single-crystal diffraction data collected for $CaFe_2O_4$ at high pressure reveal above 50 GPa an isosymmetric phase transition (i.e., no change in symmetry) marked by a volume decrease of 8.4%. X-ray emission spectroscopic data at ambient and high pressure confirm that the nature of the phase transition is related to the Fe³⁺ high-spin/low-spin transition. The bulk modulus K_0 calculated with a Birch Murnaghan EoS (K' = 4) is remarkably different [$K_0 = 159(2)$ GPa for CaFe₂O₄ "high spin" and $K_0 = 235(10)$ GPa for CaFe₂O₄ "low spin"]. Crystal structure refinements reveal a decrease of 12% of the Fe³⁺ crystallographic site volume. The geometrical features of the low-spin Fe³⁺ crystallographic site at high pressure (bond lengths, volume) indicate a relevant decrease of Fe³⁺-O bond lengths, and the results are in agreement with tabulated values for crystal radii of Fe³⁺ in high- and low-spin state. The reduced crystal size of Fe³⁺ in the low-spin state suggest that in lower mantle assemblages, Fe³⁺ partitioning in crystallographic sites should be strongly affected by the iron spin state.

Keywords: CaFe₂O₄, high pressure, spin transition, single crystal