Evidence of dmisteinbergite (hexagonal form of CaAl₂Si₂O₈) in pseudotachylyte: A tool to constrain the thermal history of a seismic event

FABRIZIO NESTOLA,^{1,2,*} SILVIA MITTEMPERGHER,¹ GIULIO DI TORO,^{1,3} FEDERICO ZORZI,¹ AND DANILO PEDRON⁴

¹Dipartimento di Geoscienze, Università di Padova, Via Giotto 1, I-35137 Padova, Italy ²CNR-IGG, Sezione di Padova, Via Giotto 1, I-35137 Padova, Italy ³Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Roma, Italy ⁴Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, I-35137 Padova, Italy

ABSTRACT

The determination of the maximum temperature achieved by friction melt (T_{melt}) in pseudotachylytebearing faults is crucial to estimate earthquake source parameters (e.g., earthquake energy budgets, coseismic fault strength) on a geological basis. Here we investigated the mineralogy of a pseudotachylyte from the Gole Larghe Fault (Italian Alps) by using X-ray powder diffraction, micro-Raman spectroscopy, and EDS-equipped field emission scanning electron microscopy. In particular, we report the presence of the hexagonal polymorph of CaAl₂Si₂O₈ (dmisteinbergite) in a pseudotachylyte. Published experimental work shows dmisteinbergite can crystallize at 1200–1400 °C by rapid quenching. Therefore, the presence of dmisteinbergite in pseudotachylyte could be a reliable geothermometer for friction melts for which T_{melt} has only as yet been estimated.

Keywords: Pseudotachylyte, earthquake, dmisteinbergite, geothermometer