Kumtyubeite Ca₅(SiO₄)₂F₂—A new calcium mineral of the humite group from Northern Caucasus, Kabardino-Balkaria, Russia

IRINA O. GALUSKINA,^{1,*} BILJANA LAZIC,² THOMAS ARMBRUSTER,² EVGENY V. GALUSKIN,¹ VIKTOR M. GAZEEV,³ ALEKSANDER E. ZADOV,⁴ NIKOLAI N. PERTSEV,³ LIDIA JEŻAK,⁵ ROMAN WRZALIK,⁶ AND ANATOLY G. GURBANOV³

¹Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland

²Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland ³Institute of Geology of Ore Deposits, Geochemistry, Mineralogy and Petrography (IGEM) RAS, Staromonethy 35, 119017 Moscow, Russia ⁴OOO NPP TEPLOCHIM, Dmitrovskoye av. 71, 127238 Moscow, Russia

⁵Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, al. Żwirki i Wigury 93, 02-089 Warszawa, Poland ⁶Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland

ABSTRACT

Kumtyubeite, Ca5(SiO4)2F2-the fluorine analog of reinhardbraunsite with a chondrodite-type structure—is a rock-forming mineral found in skarn carbonate-xenoliths in ignimbrites of the Upper Chegem volcanic structure, Kabardino-Balkaria, Northern Caucasus, Russia. The new mineral occurs in spurrite-rondorfite-ellestadite zones of skarn. The empirical formula of kumtyubeite from the holotype sample is $Ca_5(Si_{1,99}Ti_{0,01})_{\Sigma_2}O_8(F_{1,39}OH_{0,61})_{\Sigma_2}$. Single-crystal X-ray data were collected for a grain of $Ca_{5}(SiO_{4})_{2}(F_{1,3}OH_{0,7})$ composition, and the structure refinement, including a partially occupied H position, converged to R = 1.56%: monoclinic, space group $P2_1/a$, Z = 2, a = 11.44637(18), b $= 5.05135(8), c = 8.85234(13) \text{ Å}, \beta = 108.8625(7)^{\circ}, V = 484.352(13) \text{ Å}^{3}$. For direct comparison, the structure of reinhardbraunsite $Ca_5(SiO_4)_2(OH_{1.3}F_{0.7})$ from the same locality has also been refined to R = 1.9%, and both symmetry independent, partially occupied H sites were determined: space group $P2_1/a, Z=2, a = 11.4542(2), b = 5.06180(10), c = 8.89170(10)$ Å, $\beta = 108.7698(9)^\circ, V = 488.114(14)$ Å³. The following main absorption bands were observed in kumtyubeite FTIR spectra (cm^{-1}): 427, 507, 530, 561, 638, 779, 865, 934, 1113, and 3551. Raman spectra are characterized by the following strong bands (cm⁻¹) at: 281, 323, 397 (v₂), 547 (v₄), 822 (v₁), 849 (v₁), 901 (v₃), 925 (v₃), 3553 (v_{0H}). Kumtyubeite with compositions between $Ca_{5}(SiO_{4})_{2}F_{2}$ and $Ca_{5}(SiO_{4})_{2}(OH_{1,0}F_{1,0})$ has only the hydrogen bond O5-H1...F5', whereas reinhardbraunsite with compositions between $Ca_5(SiO_4)_2(OH_{10}F_{10})$ and $Ca_{3}(SiO_{4})_{2}(OH)_{2}$ has the following hydrogen bonds: O5-H1...F5', O5-H1...O5', and O5-H2...O2.

Keywords: Kumtyubeite, new mineral, reinhardbraunsite, crystal structure, chondrodite, composition, Raman, FTIR, Northern Caucasus, Russia