Dmitryivanovite: A new high-pressure calcium aluminum oxide from the Northwest Africa 470 CH3 chondrite characterized using electron backscatter diffraction analysis

TAKASHI MIKOUCHI,^{1,*} MICHAEL ZOLENSKY,² MARINA IVANOVA,³ OSAMU TACHIKAWA,¹ MUTSUMI KOMATSU,¹ LOAN LE,⁴ AND MATTHIEU GOUNELLE⁵

¹Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan ²Code KT, NASA Johnson Space Center, Houston, Texas 77058, U.S.A.

³Vernadsky Institute of Geochemistry, Kosygin Street 19, Moscow 119991, Russia

⁴Jacobs Sverdrup Co., Houston, Texas 77058, U.S.A.

³Laboratoire d'Étude, de la Matiere Extraterrestre, Muséum National d'Histoire Naturelle, 57 rue Cuvier, 75005 Paris cedex, France

ABSTRACT

Dmitryivanovite ($CaAl_2O_4$) is a newly described, calcium aluminum oxide from the Northwest Africa 470 (NWA470) CH3 chondrite (Ivanova et al. 2002). NWA470 contains abundant small Ca.Alrich inclusions (CAIs), and dmitryivanovite, whose composition is close to stoichiometric $CaAl_2O_4$ $[Ca_{1,000}(Al_{1,993}Si_{0,003}Ti_{0,002})_{1,998}O_4]$, was found in one of these CAIs. It occurs as ~10 μ m subhedral grains intergrown with grossite ($CaAl_4O_7$), perovskite, and melilite. Electron backscatter diffraction (EBSD) analysis revealed that dmitryivanovite is a high-pressure polymorph of CaAl₂O₄ (a = 7.95, b = 8.62, c =10.25 Å, $\beta = 93.1^{\circ}$, space group $P_{2_1/c}$, and Z = 12). Dmitryivanovite is the third phase to be described from nature in the binary system of CaO–Al₂O₃, the other two being hibonite (CaAl₁₂O₁₉) and grossite $(CaAl_4O_7)$ —all are found in CAIs. The presence of $CaAl_2O_4$ in NWA470 suggests a local elevated dust/gas ratio in the solar nebula. The phase diagram of $CaAl_2O_4$ shows that ~2 GPa is required to stabilize the high-pressure CaAl₂O₄ polymorph at 1327 °C, above which CaAl₂O₄ condenses from the solar nebula. Because it is unlikely that the solar nebula ever had such a high total gas pressure, it appears more probable that condensation of the low-pressure polymorph occurred in the solar nebula with an enhanced dust-to-gas ratio and that subsequently the high-pressure polymorph was produced by shock metamorphism, most likely after the CaAl₂O₄-bearing CAI was incorporated into the NWA470 parent asteroid.

Keywords: Dmitryivanovite, CAI, electron backscatter diffraction, new minerals, CH chondrite