Amphibole equilibria in mantle rocks: Determining values of mantle *a*_{H2O} and implications for mantle H₂O contents

WILLIAM M. LAMB* AND ROBERT K. POPP

Department of Geology and Geophysics, Texas A&M University, College Station, Texas 77843, U.S.A.

ABSTRACT

H₂O can affect the thermophysical properties of the mantle, and nominally anhydrous mantle minerals, such as olivine, pyroxenes, and garnet, may be an important reservoir of mantle H₂O. However, the H₂O content of nominally anhydrous mantle minerals now at the Earth's surface may not always reflect mantle values. It is, therefore, desirable to develop different techniques to estimate mantle H₂O contents, or values of the activity of H₂O ($a_{H_{2}O}$) at the conditions of equilibration in the mantle. To examine the potential of amphibole equilibria to determine values of mantle $a_{H_{2}O}$, the chemical compositions of co-existing amphibole, olivine, two-pyroxenes, and spinel from a mantle xenolith, sample DH101E of McGuire et al. (1991), were used to estimate values of pressure (*P*), temperature (*T*), and $a_{H_{2}O}$.

A value of $a_{\rm H_{20}}$ was estimated from pargasite dehydration equilibria using chemical compositions of minerals as the basis for estimating activities of end-members in the natural phases (e.g., the activity of forsterite in olivine). These calculations were performed with the THERMOCALC software package and, at an estimated maximum *T* and *P* of 900 °C and 20 kbar, they yield an estimated value of $a_{\rm H_{20}} \approx 0.02$ for sample DH101E. The application of oxy-amphibole equilibrium, as described by Popp et al. (2006a, 2006b), using the composition of the amphibole in DH101E yields a value of the log of the hydrogen fugacity ($f_{\rm H_2}$) of -1.37. This value of $f_{\rm H_2}$ together with the estimated log $f_{\rm O_2}$ of -9.9 yields a value of $a_{\rm H_{20}} \approx 0.0005$ for sample DH101E. The lower estimated $a_{\rm H_{20}}$ compared to that estimated from dehydration equilibria may reflect a slight loss of H from amphibole in the post-formation environment, but both types of amphibole equilibria are consistent with a low value of $a_{\rm H_{20}}$.

Values of mantle $a_{\text{H}_{2}\text{O}}$ can be used to predict the H₂O content of mantle olivines. At 900 °C and 20 kbar, the olivine in a sample that equilibrates at $a_{\text{H}_{2}\text{O}} < 0.04$, as estimated for sample DH101E, should contain <10 wt ppm H₂O. This value is consistent with the lower end of the range of measured H₂O contents of mantle olivines (\approx 4–400 wt ppm). Thus, estimates of values of $a_{\text{H}_{2}\text{O}}$ from amphibole equilibria can produce useful predictions of both the activity of H₂O as well as the H₂O content of nominally anhydrous mantle minerals.

Keywords: Amphibole, mantle H_2O activity, H_2O in mantle, amphibole equilibria, phase equilibria, mantle a_{H_2O} , thermobarometry, thermodynamics