American Mineralogist, Volume 94, pages 1287-1290, 2009

LETTER

Hydration state and activity of aqueous silica in H₂O-CO₂ fluids at high pressure and temperature

ROBERT C. NEWTON AND CRAIG E. MANNING*

Department of Earth and Space Sciences, University of California at Los Angeles, Los Angeles, California 90095, U.S.A.

ABSTRACT

Quartz solubility in H₂O-CO₂ fluids was measured at 800 °C and 10 kbar. Mixed fluids were generated from hydrous oxalic acid, silver oxalate, silver carbonate, and liquid H₂O; solubility was determined by weight changes of the quartz crystals. Stringent blank tests and weighing procedures were used to establish the CO₂ and H₂O contents of experimental fluids. Using experimentally constrained models of H₂O activity and mixing of silica monomers and dimers, a logarithmic plot of monomer activity vs. H₂O activity yields a linear data array of constant slope *n* insignificantly different from 4 (*n* = 4.024, R^2 = 0.997), where *n* is the total monomer hydration number. Moreover, all high-quality quartz solubility data in H₂O-CO₂ fluids at lower temperature and pressure fall on the same line when SiO₂ and H₂O activities are calculated with this formulation. The same analysis for the dimer yields slope *n* of 7 (*n* = 7.049, R^2 = 0.996). Our results show that neutral silica monomers and dimers have fixed stoichiometry of Si(OH)₄·2H₂O and Si₂O(OH)₆·4H₂O (i.e., two solvating H₂O molecules per Si) in H₂O-CO₂ fluids over a range of pressure, temperature, CO₂, and SiO₂ activity.

Keywords: Quartz solubility, crustal fluids, experimental petrology, thermodynamics