High-pressure behavior of gypsum: A single-crystal X-ray study

PAOLA COMODI,^{1,*} SABRINA NAZZARENI,¹ PIER FRANCESCO ZANAZZI,¹ AND SERGIO SPEZIALE²

¹Department of Earth Sciences, University of Perugia, Perugia Italy ²GeoForschungsZentrum, Potsdam, Germany

ABSTRACT

High-pressure X-ray diffraction was carried out on a single crystal of gypsum compressed in a diamond anvil cell. The sample maintained its crystal structure up to 4.0 ± 0.1 GPa. The fit of pressure dependence of the unit-cell volume to the third-order Birch-Murnaghan equation yielded K_{T0} = 44(3) GPa and $(\partial K_T/\partial P)_0 = 3.3(3)$, where K_{T0} and $(\partial K_T/\partial P)_0$ are the isothermal bulk modulus and its pressure derivative in ambient conditions. The axial compressibility values, fitting data collected up to 3.94 GPa, were $\beta_{0a}^{\text{EoS}} = 6.1(1)$ and $\beta_{0c}^{\text{EoS}} = 5.6(1) 10^{-3} \text{ GPa}^{-1}$. The value of β_{0b}^{EoS} was 6.2(8) 10⁻³ GPa^{-1} fitting the data collected up to 2 GPa, due to non-linearity above this pressure; axial compressibility of gypsum is almost isotropic (β_{0a} : β_{0b} : β_{0c} = 1:1:0.9). This behavior is partly unexpected for a layered mineral based on alternate layers of Ca- and S-polyhedral chains separated by interlayers occupied by water molecules. Above 4.0 GPa the compression curve of gypsum shows a discontinuity with a 2.5% contraction in volume. Structural refinements indicate that SO₄ volume and average S-O bond distances remain almost unchanged from room pressure to 3.9 GPa [range 1.637(4)-1.66(9) Å³; 1.4733–1.48 Å]. The SO₄ tetrahedron undergoes distortion: the smaller distance decreases from 1.4731(9) to 1.45(2) Å and the larger increases from 1.4735(9) to 1.51(2) Å. In contrast, the calcium polyhedra show expected high-pressure behavior, becoming more regular and decreasing in volume from 25.84(8) Å³ at ambient P to 24.7(1) Å³ at 3.9 GPa. The largest variations were observed in the interlayer region where the water molecules are located. Along the b axis, the two structural layers have very different compressibilities: the polyhedral layer is almost incompressible in the pressure range studied, whereas water layer compressibility is 9.7(3) 10^{-3} GPa⁻¹, about twice that of the other two lattice parameters. At ambient conditions, water molecules form weak hydrogen bonds with the O atoms of Ca and S polyhedra. With increasing pressure, the weakest hydrogen bond becomes the strongest one: from 0.001 to 4 GPa, the distance changes from 2.806(1) to 2.73(2) Å for OW-H1...O2, and from 2.883(2) to 2.69(3) Å for OW-H2···O2. Structure refinements show that water remains in the structure when P increases. The observed distortion of sulfate tetrahedra explains the splitting of the v_1 sulfate stretching mode, and the various measured compressibilities of the two hydrogen bonds and the coalescence of the Raman stretching mode observed at pressures over 5 GPa.

Keywords: Gypsum, high pressure, single-crystal X-ray diffraction, phase transition