A solution model for high-temperature PbS-AgSbS₂-AgBiS₂ galena

NATHAN I. CHUTAS,^{1,*} VICTOR C. KRESS,¹ MARK S. GHIORSO,² AND RICHARD O. SACK^{1,3}

¹Department of Earth and Space Sciences, University of Washington, Box 351310, Seattle, Washington 98195, U.S.A. ²OFM Research-West, 7336 24th Avenue NE, Seattle, Washington 98115, U.S.A. ³OFM Research Inc., 28430 NE 47th Place, Redmond, Washington 98053, U.S.A.

ABSTRACT

Significant quantities of silver can be accommodated in galena as a coupled substitution with Ag + Sb and/or Ag + Bi for 2 Pb atoms. The limitations of this solubility are quantified experimentally for the cubic ($Fm\overline{3}m$) α -galena phase. Above 441.7 °C, the α -galena phase has complete solid solution across the Pb₂S₂-AgSbS₂-AgBiS₂ (galena-miargyrite-matildite) ternary. Dry sinter experiments at 400, 375, and 350 °C extend the known miscibility gap on the Pb₂S₂-AgSbS₂ binary into ternary compositions. Phase equilibrium and miscibility gap data and self-consistent thermodynamic data for other high-temperature phases in this system combined with data for other sulfides and sulfosalts are used to constrain an asymmetric regular solution model for the α -galena phase (Pb₂,AgSb,AgBi) S₂. Phase relations in this system suggest that simple retrograde re-equilibration during cooling can produce phase assemblages and textures commonly observed in Ag-bearing ore deposits. Bulk metal ratios of deposits in conjunction with the application of this thermodynamic model may be used to understand district Ag-distribution or as an exploration tool.

Keywords: Experimental petrology, Ag in galena, phase equilibria, thermodynamics, silver deposits