AMORPHOUS MATERIALS: PROPERTIES, STRUCTURE, AND DURABILITY[†] Solubility and solution mechanisms of NOH volatiles in silicate melts at high pressure and temperature—amine groups and hydrogen fugacity

BJORN O. MYSEN,^{1,*} SHIGERU YAMASHITA,² AND NADEZDA CHERTKOVA³

¹Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20005, U.S.A. ²Institute for Study of the Earth's Interior, Okayama University, Misasa, Tottori 682-0193, Japan ³Geological Faculty, Moscow State University, Moscow 119899, Russia

ABSTRACT

The solubility and solution mechanisms of nitrogen in silicate melts have been examined via nitrogen analyses and vibrational spectroscopy (Raman and FTIR). Pressure (*P*), temperature (*T*), hydrogen fugacity (f_{H_2}), and silicate melt composition (degree of melt polymerization) were independent variables in experiments in the 1–2.5 GPa pressure and 1300–1500 °C temperature ranges. The f_{H_2} was controlled at values defined by the magnetite-hematite (MH), Mn₃O₄-MnO (MM), NiO-Ni (NNO), magnetite-wustite (MW), and iron-wustite (IW) buffers together with H₂O.

The nitrogen solubility ranges from about 1 to about 5 mol%, calculated as N, with $\partial X_N / \partial P > 0$ and $\partial X_N / \partial f_{H_2} > 0$. The $\partial / \partial f_{H_2} (\partial X_N / \partial P)$ is also positive. Raman and FTIR spectroscopic data are consistent with solution mechanisms that involve reduction of nitrogen with increasing f_{H_2} . At low $f_{H_2} [f_{H_2}(MH)]$ and $f_{H_2}(MM)]$, nitrogen is dissolved in melts only as molecular N₂. At $f_{H_2}(NNO)$ and $f_{H_2}(MW)$, there is partial reduction of nitrogen to form N₂, NH₂⁺ complexes and molecular NH₃ in the melts, whereas at the highest $f_{H_2}(IW)$, only molecular NH₃ and NH₂⁻ groups can be identified. OH groups are also formed whenever there is reduction of nitrogen from N₂. Solution in silicate melts of reduced, NH-bearing species results in silicate melt depolymerization. At $f_{H_2}(NNO)$ and $f_{H_2}(MW)$, depolymerization occurs via H⁺ interaction with oxygen and NH₂⁺ groups serving as network-modifier. Under more reducing conditions, oxygen is replaced by NH₂⁻ groups. Solution of reduced nitrogen in silicate structure depend on redox conditions.

Keywords: NOH volatiles, melt, structure, spectroscopy