Solubility of andradite, Ca₃Fe₂Si₃O₁₂, in a 10 mol% NaCl solution at 800 °C and 10 kbar: Implications for the metasomatic origin of grandite garnet in calc-silicate granulites

JEREMY L. WYKES,^{1,2,*} ROBERT C. NEWTON,² AND CRAIG E. MANNING^{2,†}

¹Department of Earth and Marine Sciences, Australian National University, Canberra ACT 0200, Australia ²Department of Earth and Space Sciences, University of California at Los Angeles, Los Angeles, California 90095, U.S.A.

ABSTRACT

The solubility of andradite garnet was determined at 800 °C and 10 kbar in a solution of 10 mol% NaCl and 90 mol% H₂O. Experiments were syntheses carried out with high-purity natural wollastonite, reagent hematite or natural specular hematite containing \sim 1 wt% TiO₂, and fluid. All experiments were performed with Mn₂O₃-Mn₃O₄ or Fe₂O₃-Fe₃O₄ oxygen buffers in a piston-cylinder apparatus with NaCl pressure media for 1–3 days. Andradite saturation was determined by the presence or absence of garnet in quenched charges.

Andradite dissolves incongruently to hematite and fluid with CaSiO₃ molality (m_{CS}) of 0.0838 ± 0.0015 for the reagent hematite and both buffers. Slightly higher m_{CS} of 0.0895 ± 0.0005 for the natural hematite and Mn-oxide f_{O_2} buffer is interpreted as due to incomplete equilibration and/or ~9 mol% Ti in the run-product andradite. Dissolved Fe molality could be determined only approximately, but must be at least ten times lower than m_{CS} . Quenched fluids were very basic (pH 11–12). The solubility of Fe₂O₃ in andradite-saturated H₂O-NaCl fluids is lower than that of Al₂O₃ at grossular saturation at the same pressure (*P*), temperature (*T*), and fluid composition.

The results permit a test of a model of CaSiO₃ dissolution in NaCl solutions to three dominant aqueous species: CaCl⁺, OH⁻, and H₃NaSiO₄. Combination of the CaSiO₃ molality at andradite saturation with wollastonite solubility at the same conditions (0.1253 \pm 0.0047 molal; Newton and Manning 2006) leads to a Gibbs free energy change of the reaction 3 wollastonite + hematite = andradite at 800 °C and 10 kbar of -32.21 \pm 2.45 kJ. The good agreement between this value and that derived from previous studies supports the dissolution model of CaSiO₃ in NaCl solutions. The low solubility of the Fe₂O₃ component of andradite contrasts with the high solubility of magnetite and of Fe in pelitic and granitic mineral assemblages measured in acidic chloride solutions by previous workers at lower *P* and *T*. The results imply that Fe₂O₃ is conserved during metasomatic processes affecting calc-silicates at high metamorphic grades.

Keywords: Experimental petrology, thermodynamics, fluid, crystal growth, metasomatism