LETTER

Heat capacity and entropy of melanophlogite: Molecule-containing porosils in nature

CHARLES A. GEIGER,^{1,*} EDGAR DACHS,² AND MARIKO NAGASHIMA¹

¹Institut für Geowissenschaften, Abteilung Mineralogie, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany ²Fachbereich Materialforschung und Physik, Abteilung Mineralogie, Universität Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria

ABSTRACT

The heat capacities of two different molecule-containing melanophlogites of approximate composition 46SiO₂·1.80CH₄·3.54N₂·1.02CO₂ from Mt. Hamilton, California, and 46SiO₂·3.59CH₄·3.10N₂·1.31CO₂ from Racalmuto, Sicily, along with a heat-treated (molecule-free) sample of composition SiO₂, were studied between 5 and 300 K using heat-pulse microcalorimetry. The molecule-free sample was obtained by heating natural Racalmuto crystals at 1173 K for 24 h. The standard third-law entropy of the molecule-free sample is $S^{\circ} = 2216.3 \pm 6.6 \text{ J/(mol·K)}$ for 46SiO_2 and the natural Mt. Hamilton and Racalmuto samples give $S^{\circ} = 2805.7 \pm 8.4 \text{ J/(mol·K)}$ and $S^{\circ} = 2956.8 \pm 8.9 \text{ J/(mol·K)}$, respectively. The entropy and Gibbs free energy for molecule-free melanophlogite relative to quartz at 298 K are $\Delta S_{\text{trans}} = 6.7 \text{ J/(mol·K)}$ and $\Delta G_{\text{trans}} = 7.5 \text{ kJ/mol}$, respectively and, thus, it does not have a thermodynamic field of stability in the SiO₂ system. The difference in C_P values between molecule-containing and molecule-free melanophlogite is characterized by an increase in C_P from 0 to ~70 K, and it then reaches a roughly constant value at 70 K $\leq T \leq 250$ K. The ΔS^{txn} at 298 K for 46SiO₂(melan.) $+ xCH_4(gas) + yCO_2(gas) + zN_2(gas) = 46SiO_2 (xCH_4)^{12} (yCO_2, zN_2)^{14}$ is estimated to be about -642 and -802 J/(mol K) for the Mt. Hamilton and Racalmuto samples, respectively. The thermodynamic data, as well as published results on the occurrence of natural molecule-containing samples suggest that melanophlogite crystallizes metastabily. The occurrence of melanophlogite and the lack of other porosils in nature are probably due to the essential role of molecular structure-directing agents. For melanophlogite they can be CO_2 , N_2 , and CH_4 , whereas the crystallization of other porosils requires more chemically and structurally complex molecules that are not naturally abundant.

Keywords: Melanophlogite, heat capacity, entropy, clathrasils, microporous minerals, clathrate