Synthesis and crystal structure of the feldspathoid CsAlSiO₄: An open-framework silicate and potential nuclear waste disposal phase

G. DIEGO GATTA,^{1,2,*} N. ROTIROTI,^{1,2} P.F. ZANAZZI,³ M. RIEDER,⁴ M. DRABEK,⁵ Z. WEISS,^{4,†} AND R. KLASKA⁶

¹Dipartimento di Scienze della Terra, Università degli Studi di Milano, Italy
²CNR-Istituto per la Dinamica dei Processi Ambientali, Milano, Italy
³Dipartimento di Scienze della Terra, Università degli Studi di Perugia, Italy
⁴Institute of Materials Chemistry, VSB, Technical University of Ostrava, Czech Republic
⁵Czech Geological Survey, Prague, Czech Republic
⁶HeidelbergCement AG, Ennigerloh, Germany

ABSTRACT

Crystalline CsAlSiO₄ was synthesized from a stoichiometric mixture of Al₂O₃ + SiO₂ + Cs₂O (plus excess water) in Ag-capsules at hydrostatic pressure of 0.1 GPa and temperature of 695 °C. The duration of synthesis was 46 h. The crystal structure of CsAlSiO₄ was investigated by single-crystal X-ray diffraction. The structure is orthorhombic with *Pc*₁*n* space group and lattice parameters: a = 9.414(1), b = 5.435(1), and c = 8.875(1) Å. Because of the orthohexagonal relation between *b* and a ($a \approx b\sqrt{3}$), within the standard uncertainty on the lattice parameters, a hexagonal superlattice exists, which is responsible for twinning. The crystals are twinned by reflection, with twin planes (110) and (310): twinning in both cases is by reticular merohedry with twin index 2 and hexagonal tultice (L_T). The transformation from the lattice of the individual (L_{ind}) to L_T is given by: $\mathbf{a}_{T} = \mathbf{a}_{ind} - \mathbf{b}_{ind}, \mathbf{b}_{T} = 2\mathbf{b}_{ind}$, and $\mathbf{c}_{T} = \mathbf{c}_{ind}$. The refinement was initiated using the previously published atomic coordinates for RbAlSiO₄.

The crystal structure of the CsAlSiO₄ feldspathoid is built on an ABW framework type, showing a fully ordered Si/Al-distribution in the tetrahedral framework. The only extra-framework site is occupied by Cs, lying off-center in the 8mR-channels. CsAlSiO₄ is more likely to retain Cs when immersed in a fluid phase, relative to several other Cs-bearing zeolites. The topological configuration of the Cs-polyhedron (and its bonding environment), the small dimension of the pores and the high flexibility of the ABW framework type would imply a better thermal and elastic stability of CsAlSiO₄ than those of the zeolitic Cs-aluminosilicates. In this light, CsAlSiO₄ can be considered as a functional material potentially usable for fixation and deposition of radioactive isotopes of Cs and can also be considered as a potential solid host for a ¹³⁷Cs γ -radiation source to be used in sterilization applications.

Keywords: CsAlSiO₄, RbAlSiO₄, ABW framework type, feldspathoid, crystal structure, nuclear waste disposal phase