Multiple titanium substitutions in biotites from high-grade metapelitic xenoliths (Euganean Hills, Italy): Complete crystal chemistry and appraisal of petrologic control

RAFFAELE SASSI,^{1,*} GIUSEPPE CRUCIANI,² CLAUDIO MAZZOLI,^{1,3} LUCA NODARI,⁴ AND JOHN CRAVEN⁵

¹Dipartimento di Geoscienze, Università di Padova, Via Giotto 1, I-35121 Padova, Italy

²Dipartimento di Scienze della Terra, Università di Ferrara, Via Saragat 1, I-44100 Ferrara, Italy

³Istituto di Geoscienze e Georisorse, CNR, C.so Garibaldi 37, I-35121 Padova, Italy

⁴Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, I-35131 Padova, Italy

⁵School of Geosciences, Grant Institute, The King's Buildings, West Mains Road, Edinburgh EH9 3JW, U.K.

ABSTRACT

Biotites from metapelitic xenoliths included within trachytes from the Euganean Hills (Italy) were analyzed by single-crystal X-ray diffraction (XRD), electron microprobe (EMP), scanning electron microscope (SEM), secondary ion mass spectrometry (SIMS), and Mössbauer spectroscopy. These biotites are Ti-rich and occur in gneissic xenoliths that underwent regional high-*T*/low-*P* metamorphism, at about 750 °C, followed by pyrometamorphism during incorporation in the melt at temperatures close to 950 °C.

Biotites are zoned, with TiO_2 content ranging from 6.79 (cores) to 8.14 wt% (rims). SIMS measurements show that the H₂O content is in the range 2.88–4.08 wt%. The simultaneous occurrence of high-Ti and high-H₂O contents, and the main cation substitutions based on EMP analyses suggest that the role of Ti-oxy in these biotites is less important than Ti-vacancy and Ti-Tschermak substitutions. Single-crystal XRD confirms that the Ti-oxy exchange was indeed effective but not the dominant substitution mechanism.

Based on our data and those taken from literature on petrologically well-constrained systems, we propose that there is a petrologic control on the type of Ti-substitution mechanisms. We consider two types of petrologic groupings for biotites: (1) group A consisting of biotites from H₂O-free or H₂O-poor petrologic environments (e.g., volcanic rocks, ultrabasic xenoliths, and crustal xenoliths in which biotite underwent incongruent melting): Ti substitution in these biotites occurs via Ti-oxy predominantly, or more specifically Fe³⁺-Ti-oxy; and (2) group B consisting of biotites from H₂O-rich petrologic environments (e.g., metamorphic rocks and crustal granitoids): Ti-vacancy, or more specifically Fe³⁺-Ti-vacancy, is the dominant mechanism in them.

It is concluded that during high-grade metamorphism the dominating type of Ti substitution in biotite is controlled by H_2O activity.

Keywords: Biotite, Ti-oxy substitution, SCXRD, SIMS